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THE JONES POLYNOMIAL OF PARALLELS AND
APPLICATIONS TO CROSSING NUMBER

RicHARD STONG

In this paper we study the Jones polynomial of the parallels of a
link or knot. From the extremal exponents occurring we derive lower
bounds on the crossing number of the knot, reproducing in particular
a number of results of Thistlethwaite. We apply these techniques to
give lower bound on the crossing number of some simple satellites of
adequate and semi-adequate knots (including cable satellites) that are
usually quadratic in the degree of the satellite.

Introduction. Several recent papers have used the Jones polynomial
to study the crossing number of a link. First, Kauffman [2], using the
Jones polynomial, showed that any two reduced, connected, alternat-
ing diagrams for a link have the same crossing number. This result
was extended independently by Murasugi [S] and Thistlethwaite [6]
showing that a reduced alternating diagram has the minimal crossing
number. Thistlethwaite [7, 8] has extended these results, using the
Kauffman (or semi-oriented) polynomial, to show that the writhe of
a reduced alternating diagram of an alternating link is an isotopy in-
variant of L and to show that an adequate diagram of a link, has
minimal crossing number.

In this paper, we will reproduce these results and some other results
of Thistlethwaite using instead the Jones polynomial of the parallels of
a link. Using this method, we will be able to give lower bounds for the
crossing number of the r-fold parallels of an adequate knot, which in
most cases are quadratic in r. We will further show that these lower
bounds are stable under a class of variations. These variants may be
thought of as being the satellites coming from flows that are C!-close
to the parallel flow, in the sense of [1].

The Kauffman bracket polynomial of a planar diagram of an un-
oriented link is an element (D) € Z[4, A~!] defined by the following
procedure. A state for D is defined to be a map s from the crossings
of D (which we take to be indexed by 1 <i<n) to {-1, 1}. Let
sD denote the diagram obtained from D by nullifying the crossings
of D according to s as in Figure 1. For any s, sD consists of dis-
joint simple closed curves. Let |sD| denote the number of such simple
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