3-VALENT GRAPHS AND THE KAUFFMAN BRACKET

G. Masbaum and P. Vogel

Abstract

We explicitly determine the tetrahedron coefficient for the onevariable Kauffman bracket, using only Wenzl's recursion formula for the Jones idempotents (or augmentation idempotents) of the Temperley-Lieb algebra.

1. Statement of the main result. In this paper, we consider unoriented knot or tangle diagrams in the plane, up to regular isotopy. Furthermore, we impose the Kauffinan relations [Ka1]

(the first relation refers to three diagrams identical except where shown, and in the second relation, \mathbf{D} represents any knot or tangle diagram). Coefficients will always be in $\mathbf{Q}(A)$, the field generated by the indeterminate A over the rational numbers. With these relations, (n, n) tangles (i.e. tangles in the square with n boundary points on the upper edge and n on the lower edge) generate a finite-dimensional associative algebra T_{n} over $\mathbf{Q}(A)$, called the Temperley-Lieb algebra on n strings (see [Li1] for more details on what follows). Multiplication in T_{n} is induced by placing one diagram above another, and the identity element 1_{n} is given by the identity (n, n)-tangle. Up to isotopy, there is a finite number of (n, n)-tangles without crossings and without closed loops; they form the standard basis of the algebra T_{n}. Let $\varepsilon: T_{n} \rightarrow \mathbf{Q}(A)$ denote the associated augmentation homomorphism, i.e. $\varepsilon\left(1_{n}\right)=1$, and ε is zero on the other basis elements. The algebra T_{n} (with coefficients in $\mathbf{Q}(A)$) is semisimple, and in particular there is an augmentation idempotent $f_{n} \in T_{n}$ with the property

$$
f_{n} x=x f_{n}=\varepsilon(x) f_{n}
$$

