ONE-PARAMETER FIXED POINT INDICES

Dončo Dimovski

Abstract

Let $F: X \times I \rightarrow X$ be a PL homotopy, where X is a compact connected PL n-dimensional manifold, in the euclidean space \mathbb{R}^{n}, $n \geq 4$, and let $P: X \times I \rightarrow X$ be the projection. A fixed point of F is a point $(x, t) \in X \times I$ such that $F(x, t)=x$. The set of all the fixed points of F is denoted by $\operatorname{Fix}(F)$. For a family V of isolated circles of fixed points of F we define two indices: $\operatorname{ind}_{1}(F, V)$ which is an element in the first homology group $H_{1}(E)$, where E is the space of paths in $X \times I \times X$ from the graph of F to the graph of P; and $\operatorname{ind}_{2}(F, V)$-which is an element in the group \mathbb{Z}_{2} with two elements. We prove that there is a compact neighborhood N of V and a homotopy from F to H rel $X \times I \backslash N$ such that $\operatorname{Fix}(H)=$ $\operatorname{Fix}(F) \backslash V$ if and only if $\operatorname{ind}_{1}(V, F)=0$ and $\operatorname{ind}_{2}(V, F)=0$. The indices $\operatorname{ind}_{1}(V, f)$ and $\operatorname{ind}_{2}(V, F)$ are defined via the degrees, $\operatorname{deg}_{1}(g)$ and $\operatorname{deg}_{2}(g)$, for maps $g: S^{1} \times S^{m} \rightarrow S^{m}$. Moreover, we show how to modify F to create circles of fixed points with prescribed indices.

Introduction. In this paper we define two indices for fixed points of homotopies between two selfmaps of a manifold, and then show that these indices provide us with sufficient and necessary conditions for removing some or all of the fixed point set, in a controlled manner. Let $F: X \times I \rightarrow X$ be a PL homotopy, where X is a compact connected PL n-dimensional manifold, contained in the euclidean space \mathbb{R}^{n}, let $n \geq 4$, and let $P: X \times I \rightarrow X$ be the projection. A fixed point of F is a point $(x, t) \in X \times I$ such that $F(x, t)=x$. The set of all the fixed points of F is denoted by $\operatorname{Fix}(F)$. In this setting, isolated circles of fixed points are the generic form of fixed points, as isolated individual fixed points are in the classical setting. The two indices, $\operatorname{ind}_{1}(F, V)$ and $\operatorname{ind}_{2}(F, V)$, are defined for a family V of finitely many isolated circles of fixed points of F. The first index, $\operatorname{ind}_{1}(F, V)$, is an element in the first homology group $H_{1}(E)$, where E is the space of paths in $X \times I \times X$ from the graph of F to the graph of P, and is a slight generalization of the first obstruction discussed in [DG]. It is mentioned in [DG] that a solution to the one parameter fixed point problem in the transverse case can be found in [HQ], via an obstruction lying in the 1 -dimensional framed bordism group of

