FREE PRODUCTS OF COMBINATORIAL STRICT INVERSE SEMIGROUPS

KARL AUINGER

Each combinatorial strict inverse semigroup S is determined by (1) a partially ordered set X which in fact is the partially ordered set of the \mathscr{I} -classes of S, (2) pairwise disjoint sets I_{α} indexed by the elements of X which in fact form the collection of \mathscr{D} - (equivalently: \mathscr{I} -) related idempotents and (3) structure mappings $f_{\alpha,\beta}: I_{\alpha} \to I_{\beta}$ for $\alpha \geq \beta$ satisfying certain compatibility conditions. The multiplication on S can be described in terms of the parameters X, I_{α} , $f_{\alpha,\beta}$. Conversely, the system $(X; I_{\alpha}, f_{\alpha,\beta})$ can be characterized abstractly in order that it defines a uniquely determined combinatorial strict inverse semigroup. In this paper, the constituting parameters X, I_{α} , $f_{\alpha,\beta}$ of the combinatorial strict inverse free product S of a collection of combinatorial strict inverse semigroups S_i are described in terms of the parameters of the semigroups S_i .

As an application it is shown that the word problem for such a free product in general is not decidable.

1. Introduction. The (\mathcal{V}) free product of an arbitrary family $\{S_i | i \in I\}$ of algebras of the same type all of them belonging to the class \mathcal{V} is the coproduct $\prod^* S_i$ in \mathcal{V} . There are homomorphisms $\phi_i: S_i \to \prod^* S_i$, $i \in I$, and for any $T \in \mathcal{V}$ and homomorphisms $\psi_i: S_i \to T$, $i \in I$, there is a unique homomorphism $\psi: \prod^* S_i \to T$ such that $\phi_i \psi = \psi_i$ for all $i \in I$.

From purely universal algebraic considerations it follows that the free product exists for any variety \mathscr{V} of inverse semigroups and is generated by isomorphic copies of the members of the given family (see, for instance, Grätzer [5]). Free products have been studied for several classes of semigroups. Semilattice free products and semilattice of groups free products are considered in the book of Petrich [14]. Band, completely simple and completely regular free products have been investigated by Jones [9, 6, 11]. Inverse semigroup free products have been studied by Jones [7, 8, 10] and Jones, Margolis, Meakin and Stephen [12]. The aim of this paper is to describe *combinatorial strict inverse semigroup* free products. A combinatorial strict

A part of the results has been presented at the Conference of Semigroup Theory, Oberwolfach, July 1991.