DESINGULARIZATIONS OF SOME UNSTABLE ORBIT CLOSURES

Mark Reeder

Let σ be a semisimple automorphism of a connected reductive group G, and let G_{σ} be the fixed points of σ . We consider the G_{σ} -orbits on the space of nilpotent elements in an eigenspace of $d\sigma$. We give a desingularization of the orbit closures and relate the G_{σ} -orbits to the G-orbits. Along the way, we describe the fixed points of σ on a flag variety G/P where P is a σ -stable parabolic subgroup of G.

I. Introduction. In this note we observe some consequences of Richardson's theorems on orbits of reductive groups, in the following situation. Let G be a simply-connected reductive algebraic group over an algebraically closed field F whose characteristic is either zero or sufficiently large (as specified below). Let \mathfrak{g} be the Lie algebra of G, and let \mathcal{N} be the variety of nilpotent elements in \mathfrak{g} . Let σ be a semisimple automorphism of G, fix a nonzero element $q \in F^{\times}$, and consider the variety

$$\mathcal{N}_{\sigma,q} = \{ x \in \mathcal{N} : d\sigma(x) = qx \}.$$

If q is not a root of unity then $\mathcal{N}_{\sigma,q}$ is the whole q-eigenspace of $d\sigma$, hence is a linear subspace of \mathfrak{g} . If q is a root of unity, the variety $\mathcal{N}_{\sigma,q}$ may even be reducible.

It was shown by Steinberg that the group of σ -fixed points G_{σ} is also a connected reductive F-group ([**S**]). The adjoint action of G_{σ} preserves each eigenspace of $d\sigma$, and $\mathcal{N}_{\sigma,q}$ consists of those G_{σ} orbits in the q-eigenspace of $d\sigma$ which are "unstable", in the sense of geometric invariant theory ([**H2**]). According to a theorem of Kac and Richardson ([**Ri3**]), the G_{σ} -orbits on $\mathcal{N}_{\sigma,q}$ are exactly the irreducible components of sets of the form $\mathcal{N}_{\sigma,q} \cap \tilde{\mathcal{O}}$, where $\tilde{\mathcal{O}}$ is a nilpotent G orbit. Richardson also proved (with our assumptions on the characteristic of F, see [**Ri1**]) that there are only finitely many