COMPACT CONTRACTIBLE *n*-MANIFOLDS HAVE ARC SPINES $(n \ge 5)$

FREDRIC D. ANCEL AND CRAIG R. GUILBAULT

The following two theorems were motivated by questions about the existence of disjoint spines in compact contractible manifolds.

THEOREM 1. Every compact contractible n-manifold $(n \ge 5)$ is the union of two n-balls along a contractible (n-1)-dimensional submanifold of their boundaries.

A compactum X is a *spine* of a compact manifold M if M is homeomorphic to the mapping cylinder of a map from ∂M to X.

THEOREM 2. Every compact contractible n-manifold $(n \ge 5)$ has a wild arc spine.

Also a new proof is given that for $n \ge 6$, every homology (n-1)-sphere bounds a compact contractible *n*-manifold. The implications of arc spines for compact contractible manifolds of dimensions 3 and 4 are discussed in §5. The questions about the existence of disjoint spines in compact contractible manifolds which motivated the preceding theorems are stated in §6.

1. Introduction. Let M be a compact manifold with boundary. A compactum X is a *spine* of M if there is a map $f : \partial M \to X$ and a homeomorphism $h : M \to \operatorname{Cyl}(f)$ such that h(x) = q((x, 0))for $x \in \partial M$. Here $\operatorname{Cyl}(f)$ denotes the mapping cylinder of f and $q : (\partial M \times [0,1]) \cup X \to \operatorname{Cyl}(f)$ is the natural quotient map. Thus $q_{|\partial M \times [0,1]}$ and q|X are embeddings and q(x,1) = q(f(x)) for $x \in$ ∂M . So h carries ∂M homeomorphically onto $q(M \times \{0\}), h^{-1} \circ q_{|X}$ embeds in X int M, and $M - h^{-1}(q(X)) \cong \partial M \times [0,1)$.

An arc A in the interior of an *n*-manifold M is tame if A has a neighborhood U in M such that (U, A) is homeomorphic to $(\mathbb{R}^n, [-1, 1] \times (0, 0, ..., 0))$. An arc in the interior of a manifold is wild if it is not tame.