L^p-BOUNDEDNESS OF THE HILBERT TRANSFORM AND MAXIMAL FUNCTION ALONG FLAT CURVES IN \mathbb{R}^n

SARAH N. ZIESLER

We consider the Hilbert transform and maximal function associated to a curve $\Gamma(t) = (t, \gamma_2(t), \ldots, \gamma_n(t))$ in \mathbb{R}^n . It is well-known that for a plane convex curve $\Gamma(t) = (t, \gamma(t))$ these operators are bounded on L^p , $1 , if <math>\gamma'$ doubles. We give an *n*-dimensional analogue, $n \ge 2$, of this result.

1. Introduction. Let $\Gamma : \mathbb{R} \longrightarrow \mathbb{R}^n$ be a curve in \mathbb{R}^n , $n \ge 2$, with $\Gamma(0) = 0$. We define the associated Hilbert transform, \mathcal{H}_{Γ} and maximal function \mathcal{M}_{Γ} by

$$\mathcal{H}_{\Gamma}f(x) = \mathrm{p.\,v.}\int_{-\infty}^{\infty}f(x-\Gamma(t))rac{dt}{t}$$

and

$$\mathcal{M}_{\Gamma}f(x) = \sup_{r>0} \frac{1}{r} \int_0^r |f(x - \Gamma(t))| dt,$$

respectively. We use p. v. to indicate that we are taking a principal value integral.

There has been considerable interest in finding conditions on Γ which give $L^2(\mathbb{R}^n)$ -boundedness or $L^p(\mathbb{R}^n)$ -boundedness, $1 , of <math>\mathcal{H}_{\Gamma}$ and \mathcal{M}_{Γ} , when Γ is permitted to be flat (i.e. vanish to infinite order) at the origin; the case of well-curved Γ was dealt with in the 1970's, see for example [7].

The aim of this paper is to give an n-dimensional analogue of the following well-known theorem for plane curves.

THEOREM 1.1. [1]. Let $\Gamma : \mathbb{R} \longrightarrow \mathbb{R}^2$, $\Gamma(t) = (t, \gamma(t))$ be a convex curve such that $\gamma \in C^2(0, \infty)$ is either even or odd and $\gamma(0) = \gamma'(0) = 0$. Suppose that $\exists 1 < \lambda < \infty$ such that $\forall t \in (0, \infty)$

(1)
$$\gamma'(\lambda t) \ge 2\gamma'(t).$$