A DIFFERENTIABLE STRUCTURE FOR A BUNDLE OF C*-ALGEBRAS ASSOCIATED WITH A DYNAMICAL SYSTEM

Мото О'исні

Let (M,G) be a differentiable dynamical system, and σ be a transverse action for (M,G). We have a differentiable bundle (B, π, M, C) of C^{*}-algebras with respect to a flat family \mathcal{F}_{σ} of local coordinate systems and we have a flat connection ∇ in B. If G is connected, the bundle B is a disjoint union of $\rho_x(C^*_r(\mathcal{G}))$ $(x \in M)$, where \mathcal{G} is the groupoid associated with (M,G) and ρ_x is the regular representation of $C_r^*(\mathcal{G})$. We show that, for $f \in C_c^{\infty}(\mathcal{G})$, a cross section $cs(f): x \mapsto \rho_x(f)$ is differentiable with respect to the norm topology, and calculate a covariant derivative $\nabla(cs(f))$. Though B is homeomorphic to the trivial bundle, the differentiable structure for B is not trivial in general. Let B^{σ} be a subbundle of B generated by elements f with the property $\nabla(cs(f)) = 0$. We show the triviality of the differentiable structure for B^{σ} induced from that for B when $C^*_r(\mathcal{G})$ is simple. We have a bundle RM(B) of right multiplier algebras and it contains B as a subbundle. Let (M,G) be a Kronecker dynamical system and σ be a flow whose slope is rational. In this case, we have a subbundle D of RM(B) whose fibers are *- isomorphic to $C(\mathbb{T})$. The flat connection ∇^r in D is not trivial and the bundle B decomposes into the trivial bundle B^{σ} and the non-trivial bundle D. Moreover, for a σ -invariant closed connected submanifold N of M with $\dim N = 1$, we show that $C_r^*(\mathcal{G}|N)$ is *-isomorphic to $C_r^*(D_x, \Phi_x)$, where Φ_x is the holonomy group of ∇^r with reference point x. If G is not connected, we also have sufficiently many differentiable cross sections of B and calculate their covariant derivatives.

0. Introduction. In the theory of C^* -algebras, one sometimes study a stable C^* -algebra $A \otimes \mathcal{K}$ instead of studying a given C^* -algebra A itself, where \mathcal{K} is the algebra of all compact operators on the infinite dimensional separable Hilbert space. There are many