ON THE UNIQUENESS OF CAPILLARY SURFACES OVER AN INFINITE STRIP

Jenn-Fang Hwang

In 1987, Tam proved that the solution of the capillary surface equation without gravity over an infinite strip must be a rigid rotation of a cylinder. Here we give a simple proof for Tam's Theorem and generalize his result.

1. Introduction. Let Ω be a domain in \mathbb{R}^{n}. Consider the equation of prescribed mean curvature

$$
\begin{equation*}
\operatorname{div} T u=H \text { in } \Omega \tag{1}
\end{equation*}
$$

where $T u=\frac{D u}{\sqrt{1+|D u|^{2}}}$ and $D u$ is the gradient of u.
Finn [4] proved that if $H=n, \Omega$ contains the unit ball B_{1} of \mathbb{R}^{n}, and (1) has a solution u, then Ω has to be exactly B_{1} and u must be a lower hemisphere. We emphasize that no boundary condition is imposed.

In the case Ω is unbounded, Finn [4] conjectured that the only solution of (1) with $H=2$ over an infinite strip of width 1 in \mathbb{R}^{2} is a cylinder. Wang [9] and Collin [2] independently showed that other different solutions can appear, so Finn's conjecture is not true.

In $[7],[8]$ Tam considered the problem related to Finn's conjecture as follows:

$$
\begin{cases}\operatorname{div} T u=H & \text { in } \Omega, \tag{2}\\ T u \cdot \nu=\cos \alpha & \text { on } \partial \Omega\end{cases}
$$

where H and α are constants, Ω is the infinite strip $\left(-\frac{1}{2}, \frac{1}{2}\right) \times \mathbb{R}, \nu$ is the unit outward normal of $\partial \Omega$. The boundary value problem (2) determines the height of a capillary surface without gravity. Note that if (2) has a solution, then $H=2 \cos \alpha([7])$.

