ON THE UNIQUENESS OF CAPILLARY SURFACES OVER AN INFINITE STRIP

JENN-FANG HWANG

In 1987, Tam proved that the solution of the capillary surface equation without gravity over an infinite strip must be a rigid rotation of a cylinder. Here we give a simple proof for Tam's Theorem and generalize his result.

1. Introduction. Let Ω be a domain in \mathbb{R}^n . Consider the equation of prescribed mean curvature

(1) $\operatorname{div} Tu = H \text{ in } \Omega$

where $Tu = \frac{Du}{\sqrt{1+|Du|^2}}$ and Du is the gradient of u.

Finn [4] proved that if $H = n, \Omega$ contains the unit ball B_1 of \mathbb{R}^n , and (1) has a solution u, then Ω has to be exactly B_1 and u must be a lower hemisphere. We emphasize that no boundary condition is imposed.

In the case Ω is unbounded, Finn [4] conjectured that the only solution of (1) with H = 2 over an infinite strip of width 1 in \mathbb{R}^2 is a cylinder. Wang [9] and Collin [2] independently showed that other different solutions can appear, so Finn's conjecture is not true.

In [7], [8] Tam considered the problem related to Finn's conjecture as follows:

(2)
$$\begin{cases} \operatorname{div} Tu = H & \text{in } \Omega, \\ Tu \cdot \nu = \cos \alpha & \text{on } \partial \Omega \end{cases}$$

where H and α are constants, Ω is the infinite strip $\left(-\frac{1}{2}, \frac{1}{2}\right) \times \mathbb{R}$, ν is the unit outward normal of $\partial\Omega$. The boundary value problem (2) determines the height of a capillary surface without gravity. Note that if (2) has a solution, then $H = 2 \cos \alpha$ ([7]).