CONVERGENCE OF INFINITE EXPONENTIALS

Gennady Bachman

In this paper we give two tests of convergence for an infinite exponential $a_1^{a_2^{a_3}}$. We also show that these tests are essentially the best possible.

1. Introduction and Statement of Results. Given a sequence of positive real numbers a_n , $n = 1, 2, 3, \ldots$, we associate with it a sequence of partial exponentials E_n , $n = 1, 2, 3, \ldots$, defined by

(1.1)
$$E_n = a_1^{a_2^{-1}}$$

We will call $\{a_n\}$ a sequence of exponents and the sequence $\{E_n\}$ an infinite exponential. As in the study of sums and products one would like to develop tests of convergence of an infinite exponential. Euler [E] was the first to give such a test. He showed that in the special case $a_1 = a_2 = a_3 = \cdots = a$, E_n is convergent if and only if $e^{-e} \leq a \leq e^{1/e}$. This result has been rediscovered by many authors. An extensive bibliography of papers containing this and related results may be found in the survey paper by Knoebel [K].

In the general case of non-constant exponents the best known results are due to Barrow [B]. He showed (although some of his arguments are rather sketchy) that $\{E_n\}$ is convergent for $e^{-e} \leq a_n \leq e^{1/e}$, $n \geq n_0$. He also considered the cases $a_n \geq e^{1/e}$ and $a_n \leq e^{-e}$. In the first case, writing $a_n = e^{1/e} + \epsilon_n$, with $\epsilon_n \geq 0$, he showed that $\{E_n\}$ is convergent if

(1.2)
$$\lim_{n \to \infty} \epsilon_n n^2 < \frac{e^{1/e}}{2e},$$

and is divergent if

(1.3)
$$\lim_{n \to \infty} \epsilon_n n^2 > \frac{e^{1/e}}{2e}.$$