CONCERNING HEREDITARILY INDECOMPOSABLE CONTINUA

R. H. BING

- 1. Introduction. A continuum is indecomposable if it is not the sum of two proper subcontinua. It is hereditarily indecomposable if each of its subcontinua is indecomposable. In [3] Knaster gave an example of a hereditarily indecomposable continuum which was not a point. In this paper we study some properties of the Knaster example and describe some other hereditarily indecomposable continua.
- 2. Chained hereditarily indecomposable continua are homeomorphic. The hereditarily indecomposable continuum given [3] by Knaster was a plane continuum which was described in terms of covering bands. For each positive number ϵ , it could be covered by an ϵ -chain. Moise used [5] a hereditarily indecomposable continuum to exhibit a continuum which was topologically equivalent to each of its nondegenerate subcontinua. He called it a pseudo-arc and noted that it was similar (if not in fact topologically equivalent) to Knaster's example. It could be chained. Bing used [2] such a continuum as an example of a homogeneous plane continuum. Anderson showed [1] that the plane is the sum of a continuous collection of such continua. Theorem 1 reveals that all of these continua are topologically equivalent.

We follow the definitions used in [2]. In particular, we recall the following. A chain $D = [d_1, d_2, \dots, d_n]$ is a collection of open sets d_1, d_2, \dots, d_n such that d_i intersects d_j if and only if i is equal to j-1, j, or j+1. If the links are of diameter less than ϵ , the chain is called an ϵ -chain. We do not suppose that the links of a chain are necessarily connected.

If the chain $E = [e_1, e_2, \cdots, e_n]$ is a refinement of the chain $D = [d_1, d_2, \cdots, d_m]$, E is called crooked in D provided that if k - h > 2 and e_i and e_j are links of E in links d_h and d_k of D, respectively, then there are links e_r and e_s of E in links d_{k-1} and d_{k+1} , respectively, such that either i > r > s > j or i < r < s < j.

EXAMPLE 1. The pseudo-arc. The following description of a chained hereditarily indecomposable continuum appeared in [2] and is much like one given

Received June 1, 1950.

Pacific J. Math. 1 (1951), 43-51.