MULTIPLIERS AND BOURGAIN ALGEBRAS OF $H^{\infty}+C$ ON THE POLYDISK

Keiji Izuchi and Yasou Matsugu

It is well-known that $H^{\infty}+C$ on the unit circle is a closed subalgebra of $L^{\infty}(T)$, and Rudin proved the $\left(H^{\infty}+C\right)\left(T^{2}\right)$ is a closed subspace of $L^{\infty}\left(T^{2}\right)$ but it is not an algebra. The multiplier algebra \mathcal{M} of $\left(H^{\infty}+C\right)\left(T^{2}\right)$ is determined. Using this charaterization, we study Bourgain algebras of type $H^{\infty}+C$ on the torus T^{2} and the polydisk U^{2}. Both Bourgain algebras of $H^{\infty}+C$ and \mathcal{M} on the torus coincide with \mathcal{M}. We denote by $\tilde{\mathcal{M}}$ the space pf Poisson integral of functions in \mathcal{M} and $C_{T^{2}}\left(\bar{U}^{2}\right)$ the space of continuous functions on \bar{U}^{2} which vanish on T^{2}. It is proved that all higher Bourgain algebras of $H\left(U^{2}\right)+C\left(\bar{U}^{2}\right)$ and $H\left(U^{2}\right)+C_{T^{2}}\left(\bar{U}^{2}\right)$ are all distinct respectively, but every higher Bourgain algebra of $H\left(U^{2}\right)+C_{0}\left(U^{2}\right)$ coincides with $H\left(U^{2}\right)+$ $C_{0}\left(U_{\tilde{M}}^{2}\right)$. It is also proved that all higher Bourgain algebras of $\tilde{\mathcal{M}}$ and $\tilde{\mathcal{M}}+C_{0}\left(U^{2}\right)$ are all distinct respectively, but every higher Bourgain algebra of $\tilde{\mathcal{M}}+C_{T^{2}}\left(\bar{U}^{2}\right)$ coincides with the first Bourgain algebra of $\tilde{\mathcal{M}}+C_{T^{2}}\left(\bar{U}^{2}\right)$.

1. Introduction.

Let U^{2} be the 2-dimensional unit polydisk and let T^{2} be the torus. We denote by $H^{\infty}\left(U^{2}\right)$ the space of bounded holomorphic functions in U^{2} and by $H^{\infty}\left(T^{2}\right)$ the space of radial limits of functions in $H^{\infty}\left(U^{2}\right)$. Then $H^{\infty}\left(T^{2}\right)$ is an essential supremum norm closed subalgebra of $L^{\infty}\left(T^{2}\right)$, the usual Lebesgue space with respect to $d \theta d \psi /(2 \pi)^{2}$ (see [12]). Let denote by $C(X)$ the space of continuous functions on a topological space X. The algebra $A\left(T^{2}\right)=H^{\infty}\left(T^{2}\right) \cap C\left(T^{2}\right)$ or $A\left(\bar{U}^{2}\right)=H^{\infty}\left(U^{2}\right) \cap C\left(\bar{U}^{2}\right)$ is called the polydisk algebra, where \bar{U}^{2} is the closed polydisk. In [13, Theorem 2.2], Rudin proved that $\left(H^{\infty}+C\right)\left(T^{2}\right)=H^{\infty}\left(T^{2}\right)+C\left(T^{2}\right)=\left\{f+g ; f \in H^{\infty}\left(T^{2}\right), g \in C\left(T^{2}\right)\right\}$ is a closed subspace of $L^{\infty}\left(T^{2}\right)$ but it is not an algebra. On the unit circle T, it is well known that $\left(H^{\infty}+C\right)(T)$ is a closed subalgebra of $L^{\infty}(T)[14]$. Let \mathcal{M} be the space of multipliers of $\left(H^{\infty}+C\right)\left(T^{2}\right)$, that is,

$$
\mathcal{M}=\left\{f \in L^{\infty}\left(T^{2}\right) ; f \cdot\left(H^{\infty}+C\right)\left(T^{2}\right) \subset\left(H^{\infty}+C\right)\left(T^{2}\right)\right\}
$$

Then \mathcal{M} is a closed subalgebra of $L^{\infty}\left(T^{2}\right)$. Since constant functions are contained in $\left(H^{\infty}+C\right)\left(T^{2}\right), \mathcal{M} \subset\left(H^{\infty}+C\right)\left(T^{2}\right)$. Let $C^{\infty}\left(U^{2}\right)$ be the space of

