MULTIPLIERS AND BOURGAIN ALGEBRAS OF $H^{\infty} + C$ ON THE POLYDISK

Keiji Izuchi and Yasou Matsugu

It is well-known that $H^{\infty} + C$ on the unit circle is a closed subalgebra of $L^{\infty}(T)$, and Rudin proved the $(H^{\infty} + C)(T^2)$ is a closed subspace of $L^{\infty}(T^2)$ but it is not an algebra. The multiplier algebra \mathcal{M} of $(H^{\infty}+C)(T^2)$ is determined. Using this charaterization, we study Bourgain algebras of type $H^{\infty}+C$ on the torus T^2 and the polydisk U^2 . Both Bourgain algebras of $H^{\infty}+C$ and \mathcal{M} on the torus coincide with \mathcal{M} . We denote by $\tilde{\mathcal{M}}$ the space of Poisson integral of functions in \mathcal{M} and $C_{T^2}(\bar{U}^2)$ the space of continuous functions on \overline{U}^2 which vanish on T^2 . It is proved that all higher Bourgain algebras of $H(U^2) + C(\overline{U}^2)$ and $H(U^2) + C_{T^2}(\bar{U}^2)$ are all distinct respectively, but every higher Bourgain algebra of $H(U^2) + C_0(U^2)$ coincides with $H(U^2) +$ $C_0(U^2)$. It is also proved that all higher Bourgain algebras of $\tilde{\mathcal{M}}$ and $\tilde{\mathcal{M}} + C_0(U^2)$ are all distinct respectively, but every higher Bourgain algebra of $\tilde{\mathcal{M}} + C_{T^2}(\tilde{U}^2)$ coincides with the first Bourgain algebra of $\tilde{\mathcal{M}} + C_{T^2}(\bar{U}^2)$.

1. Introduction.

Let U^2 be the 2-dimensional unit polydisk and let T^2 be the torus. We denote by $H^{\infty}(U^2)$ the space of bounded holomorphic functions in U^2 and by $H^{\infty}(T^2)$ the space of radial limits of functions in $H^{\infty}(U^2)$. Then $H^{\infty}(T^2)$ is an essential supremum norm closed subalgebra of $L^{\infty}(T^2)$, the usual Lebesgue space with respect to $d\theta d\psi/(2\pi)^2$ (see [12]). Let denote by C(X) the space of continuous functions on a topological space X. The algebra $A(T^2) = H^{\infty}(T^2) \cap C(T^2)$ or $A(\bar{U}^2) = H^{\infty}(U^2) \cap C(\bar{U}^2)$ is called the polydisk algebra, where \bar{U}^2 is the closed polydisk. In [13, Theorem 2.2], Rudin proved that $(H^{\infty} + C)(T^2) = H^{\infty}(T^2) + C(T^2) = \{f + g; f \in H^{\infty}(T^2), g \in C(T^2)\}$ is a closed subspace of $L^{\infty}(T^2)$ but it is not an algebra. On the unit circle T, it is well known that $(H^{\infty} + C)(T)$ is a closed subalgebra of $L^{\infty}(T)$ [14]. Let \mathcal{M} be the space of multipliers of $(H^{\infty} + C)(T^2)$, that is,

$$\mathcal{M} = \{ f \in L^{\infty}(T^2); \ f \cdot (H^{\infty} + C)(T^2) \subset (H^{\infty} + C)(T^2) \}.$$

Then \mathcal{M} is a closed subalgebra of $L^{\infty}(T^2)$. Since constant functions are contained in $(H^{\infty}+C)(T^2)$, $\mathcal{M} \subset (H^{\infty}+C)(T^2)$. Let $C^{\infty}(U^2)$ be the space of