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THE INTRINSIC MOUNTAIN PASS

MARTIN SCHECHTER

We show how the mountain pass and saddle point theorems
can be formulated with out the use of "auxiliary" sets. More-
over, we show that results can still be obtained when some
basic hypotheses of these theorems are not satisfied. We then
apply our results to semilinear problems for partial differen-
tial equations.

1. Introduction.

In the mountain pass and saddle point theorems one is concerned with a
C1 functional G on a Banach space E. One wishes to find a solution of
G'(u) — 0 or at least a sequence {uk} C E such that

(1.1) G{uk) -> c, G'(uk) -> 0

for some c £ R. A general procedure was formulated in Brezis-Nirenberg
[BN] as follows. One finds a compact metric space K and selects a closed
subset K* of K such that K* Φ Φ,K* φ K. One then picks a map p* E
C(K%E) and defines

A = {p e C(K,E) : p - p* on K*}

(1.2) a = infpeAmaxG(p(ξ)).

Brezis-Nirenberg assume
(A) For each p G i , max^G^ G(p(ξ)) is attained at a point in K \ K*.
They then prove that there is a sequence satisfying

(1.3) G(uk)-+a, G'(uk)->0.

In reference to the procedure one can ask three questions

1. Are the sets K, K* essential to the method, or can they be eliminated?

2. How can one verify (A)?

3. What can be said if (̂ 4) fails to hold?
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