MATCHING THEOREMS FOR TWISTED ORBITAL INTEGRALS

REBECCA A. HERB

Let F be a ρ -adic field and E a cyclic extension of F of degree d corresponding to the character κ of F^{\times} . For any positive integer m, we consider H = GL(m, E) as a subgroup of G = GL(md, F). In this paper we discuss matching of orbital integrals between H and G. Specifically, ordinary orbital integrals corresponding to regular semisimple elements of Hare matched with orbital integrals on G which are twisted by the character κ . For the general situation we only match functions which are smooth and compactly supported on the regular set. If the extension E/F is unramified, we are able to match arbitrary smooth, compactly supported functions.

$\S1.$ Introduction.

Let F be a locally compact, non-discrete, nonarchimedean local field of characteristic zero. Let κ be a unitary character of F^{\times} of order d, and let E be the cyclic extension of F corresponding to κ . Let m and n be positive integers with n = md and write G = GL(n, F), H = GL(m, E). H can be identified with a subgroup of G. In this paper we discuss matching of orbital integrals between H and G. Specifically, ordinary orbital integrals corresponding to regular semisimple elements of H are matched with orbital integrals on G which are twisted by the character κ . For the general situation we only match functions which are smooth and compactly supported on the regular set. If the extension E/F is unramified, we are able to match arbitrary smooth, compactly supported functions.

Extend κ to a character of G by $\kappa(g) = \kappa(\det g)$ and let

$$G_0 = \{g \in G : \kappa(g) = 1\}.$$

 G_0 is an open normal subgroup of G of finite index and $H \subset G_0$. Let $C_c^{\infty}(G)$ denote the set of locally constant, compactly supported, complexvalued functions on G. For any $\gamma \in G$ we let G_{γ} denote the centralizer of $\gamma \in G$. If $G_{\gamma} \subset G_0$, let

$$\Lambda^G_{\kappa}(f,\gamma) = \int_{G_{\gamma} \setminus G} f(x^{-1}\gamma x)\kappa(x)dx, f \in C^{\infty}_c(G),$$