ON MODULI OF INSTANTON BUNDLES ON \mathbb{P}^{2n+1}

VINCENZO ANCONA AND G. OTTAVIANI

Let $MI_{\mathbb{P}^{2n+1}}(k)$ be the moduli space of stable instanton bundles on \mathbb{P}^{2n+1} with $c_2 = k$. We prove that $MI_{\mathbb{P}^{2n+1}}(2)$ is smooth, irreducible, unirational and has zero Euler-Poincaré characteristic, as it happens for \mathbb{P}^3 . We find instead that $MI_{\mathbb{P}^5}(3)$ and $MI_{\mathbb{P}^5}(4)$ are singular.

1. Definition and preliminaries.

Instanton bundles on a projective space $\mathbb{P}^{2n+1}(\mathbb{C})$ were introduced in **[OS]** and **[ST]**. In **[AO]** we studied their stability, proving in particular that special symplectic instanton bundles on \mathbb{P}^{2n+1} are stable, and that on \mathbb{P}^5 every instanton bundle is stable.

In this paper we study some moduli spaces $MI_{\mathbb{P}^{2n+1}}(k)$ of stable instanton bundles on \mathbb{P}^{2n+1} with $c_2 = k$. For k = 2 we prove that $MI_{\mathbb{P}^{2n+1}}(2)$ is smooth, irreducible, unirational and has zero Euler-Poincaré characteristic (Theor. 3.2), just as in the case of \mathbb{P}^3 [Har].

We find instead that $MI_{\mathbb{P}^5}(k)$ is singular for k = 3, 4 (theor. 3.3), which is not analogous with the case of \mathbb{P}^3 [**ES**], [**P**]. To be more precise, all points corresponding to symplectic instanton bundles are singular. Theor. 3.3 gives, to the best of our knowledge, the first example of a singular moduli space of stable bundles on a projective space. The proof of Theorem 3.3 needs help from a personal computer in order to calculate the dimensions of some cohomology group [**BaS**].

We recall from [OS], [ST] and [AO] the definition of instanton bundle on $\mathbb{P}^{2n+1}(\mathbb{C})$.

Definition 1.1. A vector bundle E of rank 2n on \mathbb{P}^{2n+1} is called an instanton bundle of quantum number k if

- (i) The Chern polynomial is $c_t(E) = (1 t^2)^{-k} = 1 + kt^2 + \binom{k+1}{2}t^2 + \dots$
- (ii) E(q) has natural cohomology in the range $-2n 1 \le q \le 0$ (that is $h^i(E(q)) \ne 0$ for at most one i = i(q))

(iii) $E|_r \simeq \mathcal{O}_r^{2n}$ for a general line r.

Every instanton bundle is simple [**AO**]. There is the following characterization: