ON H^{P}-SOLUTIONS OF THE BEZOUT EQUATION

Eric Amar, Joaquim Bruna and Artur Nicolau

We obtain a sufficient condition on bounded holomorphic functions g_{1}, g_{2} in the unit disk for the existence of f_{1}, f_{2} in the Hardy space H^{p} such that $1=f_{1} g_{1}+f_{2} g_{2}$. The sharpness of this condition is also studied.

1. Let \mathbb{D} be the unit disk in the complex plane, \mathbb{T} its boundary. For $1 \leq$ $p \leq \infty, H^{p}$ denotes the Hardy-space of holomorphic functions in \mathbb{D} such that

$$
\begin{aligned}
\|f\|_{p} & =\sup _{r}\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{p} d \theta\right)^{1 / p}<+\infty \quad p<\infty \\
\|f\|_{\infty} & =\sup _{|z|<1}|f(z)|
\end{aligned}
$$

It is well-known ([7, p. 57]) that if $f \in H^{p}$, the non-tangential maximal function

$$
M f\left(e^{i \theta}\right)=\sup \{|f(z)| ; z \in \Gamma(\theta)\}
$$

$\Gamma(\theta)$ being the Stolz angle with vertex $e^{i \theta}$, belongs to $L^{p}(\mathbb{T})$.
In this paper, given $g_{1}, g_{2} \in H^{\infty}$, we study the Bezout equation $1=$ $f_{1} g_{1}+f_{2} g_{2}$. Concretely, we are interested in knowing the precise condition on g_{1}, g_{2} so that solutions $f_{1}, f_{2} \in H^{p}$ exist.

If $|g|^{2}=\left|g_{1}\right|^{2}+\left|g_{2}\right|^{2},|f|^{2}=\left|f_{1}\right|^{2}+\left|f_{2}\right|^{2}$, it follows from $1=f_{1} g_{1}+f_{2} g_{2}$ that $1 \leq|f||g|$ and hence

$$
\begin{equation*}
M\left(|g|^{-1}\right) \in L^{p}(\mathbb{T}) \tag{C}
\end{equation*}
$$

It can be easily seen that this condition is sufficient if g_{1} or g_{2} is an interpolating Blaschke product. Nevertheless, we show in Section 2 that it is not sufficient in general. In fact for each $\varepsilon>0$ we exhibit $g_{1}, g_{2} \in H^{\infty}$ such that $M\left(|g|^{-2+\varepsilon}\right) \in L^{p}(\mathbb{T})$ but no H^{p} solutions exist.

In Section 3 we obtain a general sufficient condition implying in particular the following:

Theorem 1. Assume that for some $\varepsilon>0$

$$
M\left(|g|^{-2}|\log | g \|^{2+\varepsilon}\right) \in L^{p}(\mathbb{T})
$$

