VALUES OF BERNOULLI POLYNOMIALS

ANDREW GRANVILLE¹ AND ZHI-WEI SUN²

Dedicated to Emma Lehmer

Let $B_n(t)$ be the *n*th Bernoulli polynomial. We show that $B_{p-1}(a/q) - B_{p-1} \equiv q(U_p - 1)/2p \pmod{p}$, where U_n is a certain linear recurrence of order [q/2] which depends only on a, q and the least positive residue of $p \pmod{q}$. This can be re-written as a sum of linear recurrence sequences of order $\leq \phi(q)/2$, and so we can recover the classical results where $\phi(q) \leq 2$ (for instance, $B_{p-1}(1/6) - B_{p-1} \equiv (3^p - 3)/2p + (2^p - 2)/p \pmod{p}$). Our results provide the first advance on the question of evaluating these polynomials when $\phi(q) > 2$, a problem posed by Emma Lehmer in 1938.

Introduction.

It has long been known that the *n*th Bernoulli polynomial $B_n(t)$, where

$$B_n(t) = \sum_{j=0}^n \binom{n}{j} B_{n-j} t^j$$

and B_k , the kth Bernoulli number, defined by the power series

$$\frac{x}{e^x - 1} = \sum_{k \ge 0} B_k \frac{x^k}{k!} ,$$

take 'special' values at certain rational numbers with small denominators:

(1)
$$B_n(1) = B_n(0) = B_n, \text{ for } n \neq 1$$

 $B_n\left(\frac{1}{2}\right) = (2^{1-n} - 1)B_n;$

¹The first author is an Alfred P. Sloan Research Fellow and a Presidential Faculty Fellow. Also supported, in part, by the National Science Foundation.

²The second author was supported by the National Natural Science Foundation of the People's Republic of China.