VALUES OF BERNOULLI POLYNOMIALS

Andrew Granville ${ }^{1}$ and Zhi-Wei Sun ${ }^{2}$
Dedicated to Emma Lehmer

Let $B_{n}(t)$ be the nth Bernoulli polynomial. We show that $B_{p-1}(a / q)-B_{p-1} \equiv q\left(U_{p}-1\right) / 2 p(\bmod p)$, where U_{n} is a certain linear recurrence of order $[q / 2]$ which depends only on a, q and the least positive residue of $p(\bmod q)$. This can be re-written as a sum of linear recurrence sequences of order $\leq \phi(q) / 2$, and so we can recover the classical results where $\phi(q) \leq 2$ (for instance, $\left.B_{p-1}(1 / 6)-B_{p-1} \equiv\left(3^{p}-3\right) / 2 p+\left(2^{p}-2\right) / p(\bmod p)\right)$. Our results provide the first advance on the question of evaluating these polynomials when $\phi(q)>2$, a problem posed by Emma Lehmer in 1938.

Introduction.

It has long been known that the nth Bernoulli polynomial $B_{n}(t)$, where

$$
B_{n}(t)=\sum_{j=0}^{n}\binom{n}{j} B_{n-j} t^{j}
$$

and B_{k}, the k th Bernoulli number, defined by the power series

$$
\frac{x}{e^{x}-1}=\sum_{k \geq 0} B_{k} \frac{x^{k}}{k!}
$$

take 'special' values at certain rational numbers with small denominators:

$$
\begin{align*}
B_{n}(1) & =B_{n}(0)=B_{n}, \quad \text { for } n \neq 1 \tag{1}\\
B_{n}\left(\frac{1}{2}\right) & =\left(2^{1-n}-1\right) B_{n} ;
\end{align*}
$$

[^0]
[^0]: ${ }^{1}$ The first author is an Alfred P. Sloan Research Fellow and a Presidential Faculty Fellow. Also supported, in part, by the National Science Foundation.
 ${ }^{2}$ The second author was supported by the National Natural Science Foundation of the People's Republic of China.

