THE QUASI-LINEARITY PROBLEM FOR C^* -ALGEBRAS

L.J. BUNCE AND J.D. MAITLAND WRIGHT

Let \mathcal{A} be a C^* -algebra with no quotient isomorphic to the algebra of all two-by-two matrices. Let μ be a quasi-linear functional on \mathcal{A} . Then μ is linear if, and only if, the restriction of μ to the closed unit ball of \mathcal{A} is uniformly weakly continuous.

Introduction.

Throughout this paper, \mathcal{A} will be a C^* -algebra and A will be the real Banach space of self-adjoint elements of \mathcal{A} . The unit ball of A is A_1 and the unit ball of \mathcal{A} is A_1 . We do not assume the existence of a unit in \mathcal{A} .

Definition. A quasi-linear functional on A is a function $\mu: A \to \mathbb{R}$ such that, whenever B is an abelian subalgebra of A, the restriction of μ to B is linear. Furthermore μ is required to be bounded on the closed unit ball of A.

Given any quasi-linear functional μ on A we may extend it to \mathcal{A} by defining

$$\tilde{\mu}(x+iy) = \mu(x) + i\mu(y)$$

whenever $x \in A$ and $y \in A$. Then $\tilde{\mu}$ will be linear on each maximal abelian *-subalgebra of A. We shall abuse our notation by writing ' μ ' instead of ' $\tilde{\mu}$ '.

When $\mathcal{A} = M_2(\mathbb{C})$, the C^* -algebra of all two-by-two matrices over \mathbb{C} , there exist examples of quasi-linear functionals on \mathcal{A} which are not linear.

Definition. A local quasi-linear functional on A is a function $\mu: A \to \mathbb{R}$ such that, for each x in A, μ is linear on the smallest norm closed subalgebra of A containing x. Furthermore μ is required to be bounded on the closed unit ball of A.

Clearly each quasi-linear functional on A is a local quasi-linear functional. Surprisingly, the converse is false, even when A is abelian (see Aarnes [2]). However when A has a rich supply of projections (e.g. when A is a von Neumann algebra) each local quasi-linear functional is quasi-linear [3].

The solution of the Mackey-Gleason Problem shows that every quasi-linear functional on a von Neumann algebra \mathcal{M} , where \mathcal{M} has no direct summand of Type I_2 , is linear [4, 5, 6]. This was first established for positive quasi-linear functionals by the conjunction of the work of Christensen [7] and