FACTORIZATION PROBLEMS IN THE INVERTIBLE GROUP OF A HOMOGENEOUS C*-ALGEBRA

N. Christopher Phillips

Let X be a compact metric space of dimension d. In previous work, we have shown that for all sufficiently large n, every element of the identity component $U_{0}\left(C(X) \otimes M_{n}\right)$ of the unitary group $U\left(C(X) \otimes M_{n}\right)$ is a product of at most 4 exponentials of skewadjoint elements. On the other hand, if X is a manifold then some elements of $U_{0}\left(C(X) \otimes M_{n}\right)$ require at least about d / n^{2} exponentials. Similar qualitative behavior (with different bounds: 5 and $d /\left(2 n^{2}\right)$) holds for the problem of factoring elements of the identity component $\operatorname{inv}_{0}\left(C(X) \otimes M_{n}\right)$ of the invertible group as products of exponentials of arbitrary elements of the algebra. In this paper, we identify the sets of finite products of 10 other types of elements of $\operatorname{inv}_{0}\left(C(X) \otimes M_{n}\right)$, and we show that the minimum lengths of factorizations have the same qualitative behavior as the two exponential factorization problems above (after a suitable minor modification in 3 of the 10 cases). We obtain upper bounds for large n that range from 5 to 22 , and lower bounds approximately of the form $r d / n^{2}$ with r ranging from $1 / 16$ to 2 . The classes of elements we consider all make sense in general unital C^{*} algebras. They are: unipotents, positive invertibles, selfadjoint invertibles, symmetries, ${ }^{*}$-symmetries, commutators of elements of $\operatorname{inv}_{0}(A)$ and $U_{0}(A)$, accretive elements, accretive unitaries, and positive-stable elements (real part of spectrum positive). The last three classes are the ones requiring the slight modification; without it, lengths of factorization behave like exponential length rather than exponential rank.

Introduction.

If A is a unital C^{*}-algebra, then the C^{*} exponential rank of A, denoted $\operatorname{cer}(A)$, is the smallest $n \in\{1,1+\varepsilon, 2,2+\varepsilon, \ldots, \infty\}$ such that every element of the identity component of the unitary group of A is a product of at most n exponentials of skewadjoint elements. (We say u is a product of $k+\varepsilon$ exponentials if it is a limit of products of k exponentials.) In [13] it is proved that for $n \geq 2$ and X a compact manifold, $\operatorname{cer}\left(C(X) \otimes M_{n}\right)$ is at least as large as about $\operatorname{dim}(X) / n^{2}$, but on the other hand is bounded above

