A COMPARISON THEOREM FOR EIGENVALUES
OF NORMAL MATRICES
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The following interesting theorem was recently obtained by H.
Wielandt (Oral communication, see also J. Todd [3]):

Let M, N be two normal matrices of order n, and let r denote the
rank of M—N. Let D be an arbitrary closed circular disk in the com-
plex plane, If D contains exactly p eigenvalues of M, and exactly q
eigenvalues of N, then |p—q|<r.

It is then natural to raise the following question: Without con-
sidering the rank of M—N, is it possible to compare the eigenvalues
of M and N in a manner similar to that of Wielandt’s theorem ? The
purpose of this Note is to present such a rank-free comparison theorem
which includes Wielandt’s theorem stated above.

THEOREM. Let M, N be two normal matrices' of order n and let
r be an integer such that 0<r<n. Let ¢e=>0 be such that ¢* is not less
than the (r+1)th eigenvalue of (M— N)*(M— N), when the eigenvalues of
(M—N)*(M— N) are arranged in descending order.* If a closed circular
disk

|z —2o| <p
contains p eigenvalues of M, then the concentric disk
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contains at least p—r eigenvalues of N.

While Wielandt’s proof of his theorem uses geometric arguments
involving convexity, the proof of our theorem will be based on an in-
equality (Lemma below). This difference in methods explains why our
result is of more quantitative character than Wielandt’s theorem.

LEMMA. Let A, B be any two matrices® of order n. If {a;}, {8},
{r.} are the eigenvalues of A*A, B*B and (A+B)*(A+B) respectively,
each arranged in descending order
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1The elements of all matrices considered here are real or complex numbers.

2 As usual, the adjoint of a matrix A is denoted by A%,

3Here A, B need not be normal.
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