THE USE OF FORMS IN VARIATIONAL CALCULATIONS

LOUIS AUSLANDER

Introduction. The purpose of this paper is to present a method of calculating the first and second variation which is suitable for spaces which have a Euclidean connection. I then use this method to calculate the first and second variations along a geodesic in a Finsler space in terms of differential invariants of the Finsler metric. In the special case of Riemannian geometry, this calculation has been carried out by Schoenberg in [4].

Indications as to how this calculation should be made are originally due to E. Cartan [1]. I wish to thank Prof. S. S. Chern for the privilege of seeing his calculations on this matter for Riemann spaces.

1. Algebraic Preliminaries. Let I = [0, 1] and $0 \le \xi_1, \xi_2 \le 1$. Let M^n be an *n*-dimensional C^{∞} manifold. Assume we have a one parameter family of mappings of I into M^n which we will denote by $f(\xi_1, \xi_2)$, where ξ_2 is taken as the parameter along I and ξ_1 parametrizes the family of mappings. Then we may define a mapping $\eta: I \times I \rightarrow M^n$ by the equation

$$\eta(\xi_1, \xi_2) = f(\xi_1, \xi_2).$$

We require that η shall also be a C^{∞} mapping.

Let η_* denote the mapping induced by η on the tangent space to $I \times I$ into the tangent space to M^n . Let η^* denote the dual mapping induced on the cotangent spaces. Then we define two vector fields X_1 and X_2 over $\eta(I \times I)$ by

$$X_2 = \eta_*(\partial/\partial \xi_2)$$
 and $X_1 = \eta_*(\partial/\partial \xi_1)$.

Then if w is any form in M^n we may write

$$\gamma^*(w) = w_{\delta}d\xi_1 + w_dd\xi_2$$
 ,

where w_{δ} and w_{d} are defined by the equation.

LEMMA 1.1. If $\langle X, w \rangle$ denotes the value that X takes on the covector w at each point, then

$$w_{\delta} = \langle X_{i}, w \rangle$$

and

$$w_a = \langle X_2, w \rangle$$
.

Received February 12, 1954 and in revised form June 2, 1954.