
ON A THEOREM OF S. BERNSTEIN
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1. Introduction and proof of the main theorem. A result of S.
Bernstein [4] is the following.

THEOREM A. // p(z) is a polynomial of degree n such that
[max \p(z)\, \z\ = ΐ\ = l, then

(1) [max|p(s)|, \z\=R>Y\<R\

with equality only for p(z) = λzn, where U| = l.

We propose to show here that if we restrict ourselves to poly-
nomials of degree n having no zero within the unit circle the right
hand member of (1) can be made smaller. In particular we have the
following result.

THEOREM 1. // p(z) is a polynomial of degree n such that
[max|p(£)|, |2| = 1] = 1, and p(z) has no zero within the unit circle, then

with equality only for p(z) = (λ + μzn)j2, where \χ\ = \μ\ = \.

In order to prove Theorem 1 we use a conjecture of Erdos first
proved by Lax [2] (See also [1]).

THEOREM B. If p(z) is a polynomial of degree n such that
[max 130(2)I, |2| = 1] = 1, and p(z) has no zero within the unit circle, then

Turning now to Theorem 1, let us assume that p(z) does not have
the form (λ-\-μzn)l2. In view of Theorem B

(2) \pf{e^)\^n

o , 0<^<2ττ,
Li

from which we may deduce that
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