TWO-GROUPS AND JORDAN ALGEBRAS

JAMES E. WARD, III

Stroud and Paige have introduced an important class of central simple Jordan algebras $B(2^n)$ of characteristic two. This paper determines the automorphism groups of the algebras $B(2^n)$ and, in so doing, produces an infinite family of finite 2-groups. This is accomplished by characterizing the automorphisms of $B(2^n)$ as matrices operating on the natural basis for the underlying vector space of $B(2^n)$ and then using this characterization to obtain generators and commuting relations for the automorphism groups.

Throughout the paper let $q = 2^{n-2}$, $r = 2^{n-1}$, $s = 2^n$, and $t = 2^{n+1}$. $\delta_{i,j}$ is the Kronecker delta.

1. The algebras. In 1965 J. B. Stroud [3], pursuing some earlier work of E. C. Paige [2], defined the following class of vector spaces and proved that they are central simple Jordan Algebras of characteristic two:

DEFINITION. Let $B(2^n)$ for $n \ge 2$ be the vector space over the field Z_2 of two elements with basis $u_{-1}, u_0, u_1, \dots, u_{s-2}, v_1, v_2, \dots, v_s$ and with multiplication in $B(2^n)$ defined inductively as follows:

The products $u_i u_j$ for $-1 \leq i$, $j \leq s-2$ are defined by:

- (1) $u_0u_i = u_i$ for $-1 \leq i \leq s-2$,
- (2) $u_{-1}^2 = 0, u_{-1}u_i = u_{i-1}$ for $0 \leq i \leq s-2$,
- $(3) \quad u_iu_j=u_ju_i \text{ for } -1 \leq i, \ j \leq s-2,$
- $(4) \quad u_1^2 = u_2^2 = u_1 u_2 = 0.$

Assuming the products $u_i u_j$ are defined for $-1 \leq i, j \leq 2^k - 2$ where $2 \leq k \leq n-1$, let $p = 2^k$ and define

(5) $u_{p+i}u_j = H_{i,j}u_{p+i+j}$ when $u_iu_j = H_{i,j}u_{i+j}$, $j \neq -1$ with $H_{i,j}$ in Z_2 , (6) $u_{p+i}u_{p+j} = 0$.

For $k \ge 1$, $m \ge 0$, $p = 2^k$, define the products $u_i v_j$ by:

- (7) $u_i v_j = v_j u_i$ for $-1 \leq i \leq s-2, \ 1 \leq j \leq s$,
- (8) $u_0v_j = v_j$ for $1 \leq j \leq s$,
- $(9) \quad u_{-1}v_j = v_j + v_{j-1}, \ v_0 = 0 \ \text{for} \ 1 \leq j \leq s,$
- (10) $u_{p-1}v_{(2m)p+j} = v_{(2m+1)p+j-1} + v_{(2m+1)p+j}$ for $1 \leq j \leq p$,
- (11) $u_{p+i}v_{(2m)p+j} = d_{i,j}v_{(2m+1)p+i+j} + e_{i,j}v_{(2m+1)p+i+j+1}$

when

(12) $u_i v_j = d_{i,j} v_{i+j} + e_{i,j} v_{i+j+1}$ for $0 \le i \le p-2$, $1 \le j \le p$ and $d_{i,j}$, $e_{i,j}$ in Z_2 ,

(13)
$$u_{p+i}v_{(2m+1)p+j} = 0$$
 for $-1 \leq i \leq p-2, \ 1 \leq j \leq p$.