THE NUMERICAL RANGE OF AN OPERATOR

MARY R. EMBRY

Let A be a continuous linear operator on a complex Hilbert space X with inner product \langle , \rangle and associated norm $|| \quad ||$. Let $W(A) = \{\langle Ax, x \rangle | \mid |x \mid| = 1\}$ be the numerical range of A and for each complex number z let $M_z = \{x \mid \langle Ax, x \rangle = z \mid |x \mid|^2\}$. Let $\forall M_z$ be the linear span of M_z and $M_z \oplus M_z = \{x + y \mid x \in M_z$ and $y \in M_z\}$. An element z of W(A) is characterized in terms of the set M_z as follows:

THEOREM 1. If $z \in W(A)$, then $\forall M_z = M_z \bigoplus M_z$ and (i) z is an extreme point of W(A) if and only if M_z is linear;

(ii) if z is a nonextreme boundary point of W(A), then $\forall M_z$ is a closed linear subspace of X and $\forall M_z = \bigcup \{M_w \mid w \in L\}$, where L is the line of support of W(A), passing through z. In this case $\forall M_z = X$ if and only if $W(A) \subset L$.

(iii) if W(A) is a convex body, then x is an interior point of W(A) if and only if $\gamma M_z = X$.

It is well-known that W(A) is a convex subset of the complex plane. Thus if $z \in W(A)$, either z is an *extreme point* (not in the interior of any line segment with endpoints in W(A)), a nonextreme boundary point, or an interior point (with respect to the usual plane topology) of W(A). Thus Theorem 1 characterizes every point of W(A).

The following additional notation and terminology are used. If $K \subset X$, then K^{\perp} denotes the orthogonal complement of K. An operator A is normal if and only if $AA^* = A^*A$ and hyponormal only if $AA^* \ll A^*A$. A line L is a line of support for W(A) if and only if W(A) lies in one of the closed half-planes determined by L and $L \cap \overline{W(A)} \neq \emptyset$.

In the last section of the paper consideration is given to $\bigcap \{\text{maximal linear subspaces of } M_z\}$. One result is that if A is hyponormal and z a boundary point of W(A), then $\bigcap \{\text{maximal linear subspaces of } M_z\} = \{x \mid Ax = zx \text{ and } A^*x = z^*x\}$. This generalizes Stampfli's result in [3]: if A is hyponormal and z is an extreme point of W(A), then z is an eigenvalue of A. In [2] MacCluer proved this theorem for A normal.

2. A proof of Theorem 1. Lemmas 1 and 2 provide the core of the proof of Theorem 1.

LEMMA 1. Let z be in the interior of a line segment with endpoints a and b in $W(A), x \in M_a, y \in M_b, ||x|| = ||y|| = 1$. There exist