TAUTNESS FOR ALEXANDER-SPANIER COHOMOLOGY

E. H. SPANIER

The purpose of this note is to give a straightforward unified proof of the tautness of Alexander-Spanier cohomology in the cases where it is known to be valid and to give a necessary condition that every closed (arbitrary) subspace be taut with respect to zero dimensional cohomology.

Let F denote a contravariant functor from the category of topological spaces to the category of abelian groups. A subspace A of a topological space *X* is said to be *taut with respect to F* if the canonical map $\lim \{F(U)\} \rightarrow F(A)$ is an isomorphism (the direct limit is taken over the family of all neighborhoods of *A* in *X,* the family being directed downward by inclusion). The subspace A is *taut* in X if it is taut with respect to the Alexander-Spanier cohomology theory \bar{H} for every dimension and every coefficient group (for notation and terminology dealing with \bar{H} see [6]).

This concept of tautness has proved to be important. In [6] and [7] it is shown that a closed subspace of a paracompact Hausdorff space is taut, and this is used to deduce a strong excision property for \overline{H} . This tautness property is also used in [6] to derive the continuity property for \bar{H} . In [4] it is shown that an arbitrary subspace of a metric space is taut with respect to Čech cohomology, and this is used to obtain a general duality in spheres. Since the Čech cohomology is isomorphic to \bar{H} [3], every subspace of a metric space is taut. In [2] it is shown that every neighborhood retract of *X* is taut in X, and this is used to prove a generalized homotopy property for compact spaces. In [1] tautness is considered for sheaf cohomology and used in proving the Vietoris-Begle mapping theorem.

We shall prove a simple lemma which gives a sufficient condition for tautness. This sufficient condition is enough to establish tautness in all the various cases where it is known.

Let % be a collection of subsets of *X* and *A* a subset of *X.* The *star of A with respect to U*, denoted by $st(A, \mathcal{U})$, is defined to be the union of those elements of *°U* whose intersection with *A* is nonempty. An *open covering of A in X* is a collection $\mathcal U$ of open sets of X such that $A \subset st(A, \mathcal{U}).$

The following seems to be the main fact underlying tautness (see [2] and [6]).