CHAPTER III

9. Tamely Imbedded Subsets of a Group

The character ring of a group has a metric structure which is derived from the inner product. Let \mathfrak{L} be a subgroup of the group \mathfrak{X} . The purpose of this chapter is to state conditions on \mathfrak{L} and \mathfrak{X} which ensure the existence of an isometry τ that maps suitable subsets of the character ring of \mathfrak{L} into the character ring of \mathfrak{X} and has certain additional properties. If α is in the character ring of \mathfrak{L} and α^{τ} is defined then these additional properties will yield information concerning $\alpha^{\tau}(L)$ for some elements L of \mathfrak{L} . Once the existence of τ is established it will enable us to derive information about certain generalized characters of \mathfrak{X} provided we know something about the character ring of \mathfrak{L} . In this way it is possible to get global information about \mathfrak{X} from local information about \mathfrak{L} .

There are two stages in establishing the existence of τ . First we will require that \mathfrak{A} is in some sense "nicely" imbedded in \mathfrak{X} . When this requirement is fulfilled it is possible to define α^{τ} for certain generalized characters α of \mathfrak{A} with $\alpha(1) = 0$. In this situation α^{τ} is explicitly defined in terms of induced characters of various subgroups of \mathfrak{X} . Secondly it is necessary that the character ring of \mathfrak{A} have certain special properties. These properties make it possible to extend the definition of τ to a wider domain. In particular it is then possible to define α^{τ} for some generalized characters α of \mathfrak{A} with $\alpha(1) \neq 0$. The precise conditions that the character ring of \mathfrak{A} needs to satisfy will be stated later. In this section we are concerned with the imbedding of \mathfrak{A} in \mathfrak{X} . The following definition is appropriate.

DEFINITION 9.1. Let $\hat{\mathfrak{L}}$ be a subset of the group \mathfrak{X} such that

$$(9.1) \qquad \langle 1 \rangle \subseteq \hat{\mathfrak{L}} \subseteq N(\hat{\mathfrak{L}}) = \mathfrak{L}$$

Let $\hat{\Sigma}_0$ be the set of elements L in $\hat{\Sigma}$ such that $C(L) \subseteq \hat{\Sigma}$, and let $\mathfrak{D} = \hat{\mathfrak{L}}^{\sharp} - \mathfrak{L}_0$.

We say that $\hat{\mathfrak{L}}$ is tamely imbedded in \mathfrak{X} if the following conditions are satisfied:

(i) If two elements of $\hat{\mathfrak{L}}$ are conjugate in \mathfrak{X} , they are conjugate in \mathfrak{L} .

(ii) If \mathfrak{D} is non empty, then there are non identity subgroups $\mathfrak{D}_1, \dots, \mathfrak{D}_n$ of $\mathfrak{X}, n \geq 1$, with the following properties: