ON ISOMETRIC ISOMORPHISM OF GROUP ALGEBRAS

J. G. WENDEL

1. Introduction. Let G be a locally compact group with right invariant Haar measure m [2, Chapter XI]. The class L(G) of integrable functions on G forms a Banach algebra, with norm and product defined respectively by

$$||x|| = \int |x(g)| m(dg),$$

$$(xy)(g) = \int x(gh^{-1}) y(h) m(dh)$$
.

The algebra is called real or complex according as the functions x(g) and the scalar multipliers take real or complex values.

Suppose that τ is an isomorphism (algebraic and homeomorphic) of the group G onto a second locally compact group Γ having right invariant Haar measure μ ; let c be the constant value of the ratio $m(E)/\mu(\tau E)$, and let χ be a continuous character on G. If T is the mapping of L(G) onto $L(\Gamma)$ defined by

$$(T_x)(\tau_g) = c \chi(g) x(g), \qquad x \in L(G),$$

then it is easily verified that T is a linear map preserving products and norms; for short, T is an isometric isomorphism of L(G) onto $L(\Gamma)$.

It is the purpose of the present note to show that, conversely, any isometric isomorphism of L(G) onto $L(\Gamma)$ has the above form, in both the real and complex cases.

We mention in passing that if T is merely required to be a topological isomorphism then G and Γ need not even be algebraically isomorphic. In fact, let G and Γ be any two finite abelian groups each having n elements, of which k are of order 2. Then the complex group algebras of G and Γ are topologically isomorphic to the direct sum of n complex fields, and the real algebras are topologically isomorphic to the direct sum of k+1 real fields and (n-k-1)/2 two-dimensional algebras equivalent to the complex field. The algebraic content of this statement

Received October 24, 1950.

Pacific J. Math. 1 (1951), 305-311.