TWO THEOREMS ON METRIC SPACES
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1. Introduction. Let £ be a metric space with distance function d. The space
E is called two-point homogeneous if given any four points a, a', b, b' with
d(a,a') = d(b,b"), there exists an isometry of £ carrying a, a’ to b, b', re-
spectively. In a recent paper [7], the author has determined all the compact and
connected two-point homogeneous spaces. It is the aim of the present note to
discuss the noncompact case, and prove a conjecture of Busemann which can be
regarded also as a sharpening of a theorem of Birkhoff [1]. The results con-
cerning the noncompact two-point homogeneous spaces are not as satisfactory as
the results for the compact case; we have to assume certain conditions on the
metric.

By a segment in a metric space £, we shall mean an isometric image of a
closed interval with the usual metric. A metric space will be said to have the
property (L) if given a point p, there exists a neighborhood I of p so that each
point x (#p) of W can be joined to p by at most one segment in £. The following

theorems will be proved:

THEOREM 1. Let E be a finite-dimensional, finitely compact, convex metric
space with property (L). If E is two-point homogeneous, then E is homeomorphic

with a manifold.

THEOREM 2. Let E be a metric space with all the properties mentioned in
Theorem 1. If, moreover, dim E is odd, then £ is congruent either to the euclidean

space, the hyperbolic space, the elliptic space, or the spherical space.

Our Theorem 2 justifies the conjecture of Busemann [2, p.233] that a two-
point homogeneous three dimensional S.L. space [2, p. 78] is either elliptic,
hyperbolic, or euclidean. It is to be noted that Theorem 2 no longer holds if dim £
is even and greater than two. The complex elliptic spaces [7] and the hyperbolic

Hermitian spaces1 (2, p- 192] serve as counter examples.
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1These spaces were first introduced by H.Poincaré, and then discussed by G.Fubini
and E.Study. Following E.Cartan, we call these spaces the hyperbolic Hermitian spaces.
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