ON THE THEORY OF SPACES Λ

G. G. LORENTZ

1. Introduction. In this paper we discuss properties of the spaces $\Lambda(\phi, p)$, which were defined for the special case $\phi(x) = \alpha x^{\alpha-1}$, $0 < \alpha \leq 1$, in our previous paper [8]. A function f(x), measurable on the interval (0, l), $l < +\infty$ belongs to the class $\Lambda(\phi, p)$ provided the norm ||f||, defined by

(1.1)
$$||f|| \equiv \left\{ \int_0^l \phi(x) f^*(x)^p dx \right\}^{1/p},$$

is finite. Here $\phi(x)$ is a given nonnegative integrable function on (0, l), not identically 0, and $f^*(x)$ is the decreasing rearrangement of |f(x)|, that is, the decreasing function on (0, l), equimeasurable with |f(x)|. (For the properties of decreasing rearrangements see [5, 12, 7, and 8].) We write also $\Lambda(\alpha, p)$ instead of $\Lambda(\phi, p)$ with $\phi(x) = \alpha x^{\alpha-1}$, and $\Lambda(\phi)$ instead of $\Lambda(\phi, 1)$. We shall also consider spaces $\Lambda(\phi, p)$ for the infinite interval $(0, +\infty)$. In §2 we give some simple properties of the spaces Λ , and show in particular that $\Lambda(\phi, p)$ has the triangle property if and only if $\phi(x)$ is decreasing. In §3 we discuss the conjugate spaces $\Lambda^*(\phi, p)$, and show that the spaces $\Lambda(\phi, p)$ are reflexive. In §4 we give a generalization of the spaces $\Lambda(\phi, p)$, and characterize the conjugate spaces in case p = 1. In §5 we give applications; we prove that the Hardy-Littlewood majorants $\theta(x, f)$ of a function $f \in \Lambda(\phi, p)$ or $f \in \Lambda^*(\phi, p)$ also belong to the same class. We give sufficient conditions for an integral transformation to be a linear operation from one of these spaces into itself, and apply them to solve the moment problem for the spaces $\Lambda(\phi, p)$ and $\Lambda^*(\phi, p)$.

2. Properties of spaces $\Lambda(\phi, p)$. We shall establish the following result.

THEOREM 1. The norm ||f|| defined by (1.1) has the triangle property if and only if $\phi(x)$ is equivalent to a decreasing function; in this case f, $g \in \Lambda(\phi, p)$

Received April 11, 1951.

A large part of this investigation was carried out while the author held a fellowship at the Summer Institute of the Canadian Mathematical Congress in 1950.

Pacific J. Math. 1 (1951), 411-429.