EXTENSION OF A RENEWAL THEOREM

DAVID BLACKWELL

1. Introduction. A chance variable x will be called a *d*-lattice variable if

(1)
$$\sum_{n = -\infty}^{\infty} \Pr\{x = nd\} = 1$$

and

(2)
$$d$$
 is the largest number for which (1) holds.

If x is not a d-lattice variable for any d, x will be called a *nonlattice variable*. The main purpose of this paper is to give a proof of:

THEOREM 1. Let x_1, x_2, \cdots be independent identically distributed chance variables with $E(x_1) = m > 0$ (the case $m = +\infty$ is not excluded); let $S_n = x_1 + \cdots + x_n$; and, for any h > 0, let U(a, h) be the expected number of integers $n \ge 0$ for which $a \le S_n \le a + h$. If the x_n are nonlattice variables, then

$$U(a, h) \longrightarrow \frac{h}{m}, 0$$
 as $a \longrightarrow +\infty, -\infty.$

If the x_n are d-lattice variables, then

$$U(a, d) \longrightarrow \frac{d}{m}, 0$$
 as $a \longrightarrow +\infty, -\infty$.

(If $m = +\infty$, h/m and d/m are interpreted as zero.)

This theorem has been proved (A) for nonnegative *d*-lattice variables by Kolmogorov [5] and by Erdös, Feller, and Pollard [4]; (B) for nonnegative nonlattice variables by the writer [1], using the methods of [4]; (C) for *d*-lattice variables by Chung and Wolfowitz [3]; (D) for nonlattice variables such that the distribution of some S_n has an absolutely continuous part and $m < \infty$ by Chung

Received June 28, 1952. This paper was written under an Office of Naval Research contract.

Pacific J. Math. 3 (1953), 315-320