ITERATES OF ARITHMETIC FUNCTIONS AND A PROPERTY OF THE SEQUENCE OF PRIMES

HAROLD N. SHAPIRO

1. Introduction. In a previous paper [2], the author has investigated certain properties of the iterates of arithmetic functions which are of the following form. For $n = \prod p_i^{a_i}$,

(1.1)
$$
f(n) = \prod f(p_i) [A(p_i)]^{a_i-1},
$$

where $f(\,p^{}_i)$ is an integer, $1 < f(\,p^{}_i) < p^{}_i$, and $A\,(\,p^{}_i)$ is an integer $\leq p^{}_i$, for odd primes p_i ; whereas $f(2)$ = 1, $A(2)$ = 2. We shall denote the set of these arith metic functions by K. These conditions ensure that for $n > 2$, $f(n) < n$, and hence if $f^k(n)$ denotes the *k*-th iterate of f there is a unique integer *k* such that

$$
(1.2) \t f^{k}(n) = 2.
$$

For this *k* we write $k = C_f(n)$. We define

$$
C_f(1) = C_f(2) = 0.
$$

In this paper we propose to consider the problem of determining a $g \in K$ such that for all odd primes p, and all $f \in K$,

$$
(1.3) \t Cg(p) \ge Cf(p).
$$

The solution to this problem produces an interesting property of the sequence of primes in that we shall show that (1.3) is equivalent to having *g* skip down through the primes. More precisely, if $p_1 = 2$, $p_2 = 3$, \cdots , and in general p_i denotes the *i*-th prime, (1.3) is equivalent to having $g(3) = 2$, $g(5) = 4$ or 3, and

(1.4)
$$
g(p_i) = p_{i-1}
$$
 for $i > 3$.

2. **A theorem concerning functions of** *K.* In carrying out the proof of the result

Received September 10, 1952.

Pacific J. Math. **3 (1953), 647-655**