ITERATES OF ARITHMETIC FUNCTIONS AND A PROPERTY OF THE SEQUENCE OF PRIMES

HAROLD N. SHAPIRO

1. Introduction. In a previous paper [2], the author has investigated certain properties of the iterates of arithmetic functions which are of the following form. For $n = \prod p_i^{\alpha_1}$,

(1.1)
$$f(n) = \prod f(p_i) [A(p_i)]^{a_i-1},$$

where $f(p_i)$ is an integer, $1 < f(p_i) < p_i$, and $A(p_i)$ is an integer $\le p_i$, for odd primes p_i ; whereas f(2) = 1, A(2) = 2. We shall denote the set of these arithmetic functions by K. These conditions ensure that for n > 2, f(n) < n, and hence if $f^k(n)$ denotes the k-th iterate of f there is a unique integer k such that

$$(1.2) f^k(n) = 2.$$

For this k we write $k = C_f(n)$. We define

$$C_f(1) = C_f(2) = 0$$
.

In this paper we propose to consider the problem of determining a $g \in K$ such that for all odd primes p, and all $f \in K$,

$$(1.3) C_g(p) \ge C_f(p).$$

The solution to this problem produces an interesting property of the sequence of primes in that we shall show that (1.3) is equivalent to having g skip down through the primes. More precisely, if $p_1 = 2$, $p_2 = 3$, \cdots , and in general p_i denotes the i-th prime, (1.3) is equivalent to having g(3) = 2, g(5) = 4 or 3, and

(1.4)
$$g(p_i) = p_{i-1}$$
 for $i > 3$.

2. A theorem concerning functions of K. In carrying out the proof of the result