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1. Introduction. Schwarz gave the first rigorous construction of harmonic

functions with given singularities on closed Riemann surfaces, by means of his

alternating method for domains with annular intersection [16]. The method also

is directly applicable to open Riemann surfaces of finite genus, since these can

always be continued so as to form closed surfaces [7; 8 ] . For surfaces of infi-

nite genus, this continuation is no longer possible. 13ut if the surface is of para-

bolic type, Schwarz's method can still be used, a "null boundary" having no

effect on the behaviour of the alternating functions [5; 11]. In the general case,

there are two obstacles which prevent using Schwarz's method as such. First, if

the surface has a large (ideal) boundary, the alternating functions are not deter-

mined by their values on the relative boundaries. Second, Schwarz's convergence

proof fails, since the Poisson integral is inapplicable on arbitrary Riemann do-

mains. We are going to show that, by certain changes of Schwarz's original meth-

od, these difficulties can be overcome.

This paper is a detailed exposition of a reasoning outlined in preliminary

notes [9-11] . The manuscript of the paper was communicated (in French) to the

Helsinki University in December, 1949. In the meanwhile, the author published a

linear operator method [13], which also can be used to establish the results of

these notes. A presentation of the classical alternating method for arbitrary

Riemann surfaces seems, however, to have independent interest from a methodo-

logical viewpoint; such a presentation is the purpose of this paper.

The alternating method on Riemann surfaces, as sketched in [9-11] , was re-

ferred to also in the recent papers of Kuramochi [ 1 ] , Kuroda [z]9 Mori [ 3 ] , and

Ohtsuka [ 6 ] . A historical note on the method was given in [15] .

2. Functions with vanishing conjugate α0-periods. We start with two lemmas,

which are basic for the alternating procedure.

Let R be an arbitrary Riemann surface, and G a subdomain, compact or not.

The relative boundary aQ of G, that is, the set of boundary points of G, interior
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