APPROXIMATION OF IMPROPER INTEGRALS BY SUMS OVER MULTIPLES OF IRRATIONAL NUMBERS ## R. SHERMAN LEHMAN 1. Introduction and notation. Let α be a positive irrational number. The multiples of α , the numbers α , 2α , 3α , ..., are equidistributed mod 1. Suppose f(x) is a bounded function, Riemann integrable on the interval (0,1), and periodic with period 1. It follows from Weyl's theory of equidistribution [2] that $$\lim_{N\to\infty} \frac{1}{N} \sum_{n=1}^{N} f(n\alpha) = \int_{0}^{1} f(x) dx.$$ The purpose of this paper is to determine what modifications of this result are required when f(x) is improperly Riemann integrable. Every positive irrational number α has an infinite continued fraction expansion, $$\alpha = b_0 + \frac{1}{b_1 + \frac{1}{b_2 + \frac{1}{b_3 + \cdots}}}$$ where the b_i are integers such that $b_0 \ge 0$, and $b_i > 0$ for $i = 1, 2, 3, \cdots$. Let p_i/q_i ($i = 0, 1, 2, \cdots$) be the convergents to α . The integers p_i and q_i are relatively prime, and $$p_0 = b_0$$, $q_0 = 1$, $p_1 = b_1 b_0 + 1$, $q_1 = b_1$, $p_{i+1} = b_{i+1} p_i + p_{i-1}$, $q_{i+1} = b_{i+1} q_i + q_{i-1}$, $q_{i+1} = a_{i+1} q_{i-1} q_$ Received June 5, 1953. Presented to the Society, May 2, 1953. This work was performed under a contract with the Office of Naval Research.