ON EIGENVALUES OF SUMS OF NORMAL MATRICES

HELMUT WIELANDT

1. Problem, notations, results. A well-known theorem due essentially to Bendixson [1, Theorem II] states that if X and Y are hermitian $n \times n$ matrices with eigenvalues

 $\xi_1 \leq \xi_2 \leq \cdots \leq \xi_n$ and $\eta_1 \leq \eta_2 \leq \cdots \leq \eta_n$,

then every eigenvalue λ of X + iY is contained in the rectangle

$$\xi_1 \leq \Re \lambda \leq \xi_n, \ \eta_1 \leq \Im \lambda \leq \eta_n.$$

What is the exact range of λ , for given ξ_{ν} and η_{ν} ? We shall solve the following slightly more general problem, referring to normal instead of hermitian matrices. Let $\alpha_1, \dots, \alpha_n, \beta_1, \dots, \beta_n$ be given complex numbers. Describe geometrically the set Λ of all numbers λ which may occur as eigenvalues of A + B, where Aand B run over all normal $n \times n$ matrices with eigenvalues $\alpha_1, \dots, \alpha_n$ and β_1, \dots, β_n respectively.

To state the results concisely let us denote by the terms *circular region* and *hyperbolic region* every set of complex numbers $\xi + i\eta$ which may be described, using some real constants a, b, c, d, by

(1)
$$a\xi + b\eta + c(\xi^2 \pm \eta^2) + d \ge 0.$$

where + refers to the circular, - to the hyperbolic case. We denote by $\{\alpha_{\nu}\}$ and $\{\beta_{\nu}\}$ the sets whose elements are $\alpha_1, \dots, \alpha_n$ and β_1, \dots, β_n respectively. For every two sets Γ , Δ of complex numbers we denote by $\Gamma + \Delta$ the set whose elements are all $\gamma + \delta$, where $\gamma \in \Gamma$, $\delta \in \Delta$. Our main result is

THEOREM 1. If $\alpha_1, \dots, \alpha_n, \beta_1, \dots, \beta_n$ are arbitrary complex numbers, then the set Λ defined above can be represented as an intersection:

$$\Lambda = \bigcap \left(\{ \alpha_{\nu} \} + \Gamma \right)$$

Received April 16, 1954. This paper was prepared under a National Bureau of Standards contract with the American University.

Pacific J. Math. 5 (1955), 633-638