THE SYMMETRY FUNCTION IN A CONVEX BODY

S. STEIN

Let K_n be an *n*-dimensional convex body in *n*-dimensional Euclidean space E_n . At each point P in K_n consider the largest subset S(P) of K_n radially symmetric with respect to the point P. This set is well-defined and convex for it is simply the intersection of K_n with its radial reflection through the point P. Let m(P) equal the measure of S(P) and let f(P) equal $m(P)V_n^{-1}$ where V_n is the measure of K_n . Clearly $0 \leq f(P) \leq 1$ for all P in K_n and f(P)=0 only if P is on the boundary of K_n ; also f is continuous. Moreover f attains the value 1 only if K_n is radially symmetric. The object of this note is to present various properties of this function f.

THEOREM 1. (Besicovitch [1], n=2). There is a point P in K_2 such that f(P)=2/3. (In [3, p. 46] this theorem is ascribed to S. S. Konvyer.)

THEOREM 2. (Besicovitch [2], n=2). If K_2 is of constant width then there is a point P in K_2 such that $f(P)=.840\cdots$.

H. G. Eggleston [4] studied further the symmetric function in a body of constant width.

Using a result of P. C. Hammer [5] on the ratio which the centroid of a convex body divides the chords passing through it, F. W. Levi [6] obtained the following.

THEOREM 3. If P is the centroid of K_n then

 $f(P) \ge 2(1+n^n)^{-1}$.

The following properties of f will be obtained.

THEOREM 4. $\int_{\kappa_n} f = 2^{-n} V_n$.

COROLLARY. There is a point P in K_n such that $f(P) > 2^{-n}$.

THEOREM 5. If a is a real number then the set of points P in K_n at which $f(P) \ge a$ is convex. Furthermore f attains its maximum value at precisely one point.

Received Nov. 17, 1953, and in revised forms March 19, 1954, and Oct. 4, 1954.