ON THE NUMBER OF DISSIMILAR LINE-SUBGRAPHS OF A GIVEN GRAPH

Frank Harary

1. Introduction. Two enumeration formulas are obtained in this paper. The first provides a solution for the counting polynomial which gives the number of dissimilar line-subgraphs of a given graph, and is a generalization of the formula due to Pólya for the number of graphs which appears in [2]. The second serves to find the number of graphs in which a prescribed subgraph is distinguished or rooted. The special case in which a single point of the graph is distinguished is called a rooted graph [3, p. 76]. The number of rooted graphs also appears in [2].

Both of these results utilize in an essential way the classical enumeration theorem of Pólya [4] which enables one to express the con-figuration-counting series in terms of the configuration group and the figure-counting series. In order that these results be self-contained, we briefly review Pólya's Theorem, specialized to one variable. Let figure be an undefined term. To each figure there is assigned a nonnegative integer called its content. Let φ_{k} denote the number of different figures of content k. The figure-counting series $\varphi(x)$ is defined by

$$
\varphi(x)=\sum_{k=0}^{\infty} \varphi_{k} x^{k} .
$$

Let Γ be a permutation group of degree s and order h. A configuration of length s is a sequence of s figures. The content of a configuration is the sum of the contents of its figures. Two configurations are Γ-equivalent, if there is a permutation of Γ sending one into the other. Let F_{k} denote the number of Γ-inequivalent figures of content k. The configuration-counting series $F(x)$ is defined by

$$
F(x)=\sum_{k=0}^{\infty} F_{k} x^{k}
$$

The permutation group Γ will be called the configuration group.
Pólya's Theorem expresses $F(x)$ in terms of $\varphi(x)$ and Γ, using the cycle index of Γ. Let $h_{j_{1} j_{2} \ldots j_{s}}$ be the number of elements of Γ of type $\left(j_{1}, j_{2}, \cdots, j_{s}\right)$, that is, having j_{k} cycles of length $k,(k=1, \cdots, s)$ so that

[^0]
[^0]: Received September 20, 1954. This work was supported by a grant from the Rockefeller Foundation to the Research Center for Group Dynamics, University of Michigan.

