DIFFERENTIABLE POINTS OF ARCS IN CONFORMAL n-SPACE

N. D. LANE

Introduction. This paper is a generalization to n dimensions of the classification of the differentiable points in the conformal plane [2], and in conformal 3-space [3]. In the present paper, this classification depends on the intersection and support properties of certain families of tangent (n-1)-spheres, and on the nature of the osculating m-spheres at such a point $(m=1, 2, \dots, n-1)$.

The discussion is also related to the classification [4] of the differentiable points of arcs in projective (n+1)-space, since conformal n-space can be represented on the surface of an n-sphere in projective (n+1)-space.

1. Pencils of m-spheres. p, t, P, P_1, \dots , will denote points of conformal n-space and $S^{(m)}$ will denote an m-sphere. When there is no ambiguity, the superscript (n-1) will be omitted in the case of $S^{(n-1)}$; thus an (n-1)-sphere $S^{(n-1)}$ will usually be denoted by S alone. Such an (n-1)-sphere S decomposes the n-space into two open regions, its interior S, and its exterior \overline{S} . If $P \not\subset S$, the interior of S may be defined as the set of all points which do not lie on S and which are not separated from P by S; the exterior of S is then defined as the set of all points which are separated from P by S. An m-sphere through an (m-1)-sphere $S^{(m-1)}$ and a point $P \not\subset S^{(m-1)}$ will be denoted by $S^{(m)}[P]$; $S^{(m-1)}$]. The m-sphere through (m+2)-points P_0, P_1, \dots, P_{m+1} , not all lying on the same (m-1)-sphere, will occasionally be denoted by $S^{(m)}(P_0,$ P_1, \dots, P_{m+1}). Such a set of points is said to be *independent*. Most of the following discussion will involve the use of pencils $\pi^{(m)}$ of m-spheres determined by certain incidence and tangency conditions. An (m-1)sphere which is common to all the m-spheres of a pencil $\pi^{(m)}$ is called fundamental (m-1)-sphere of $\pi^{(m)}$. In the pencil $\pi^{(m)}$ through a fundamental (m-1)-sphere $S^{(m-1)}$ there is one and only one m-sphere $S^{(m)}(P, \pi^{(m)})$ of $\pi^{(m)}$ through each point P which does not lie on $S^{(m-1)}$. Similarly, in the pencil $\pi^{(m)}$ of all the m-spheres which touch a given m-sphere at a given point Q, there is one and only one m-sphere $S^{(m)}(P, \pi^{(m)})$ through each point $P \neq Q$. The fundamental point Q is regarded as a point *m-sphere* belonging to $\pi^{(m)}$.

Received May 18, 1955. This paper was prepared while the author held a fellowship at the Summer Research Institute of the Canadian Mathematical Congress.