SOME INTEGRAL FORMULAS FOR CLOSED HYPERSURFACES IN RIEMANNIAN SPACE

CHUAN-CHIH HSIUNG

Introduction. Let V^n be a hypersurface twice differentiably imbedded in a Riemannian space R^{n+1} of n+1 $(n \ge 2)$ dimensions, and $\kappa_1, \dots, \kappa_n$ the *n* principal curvatures at a point *P* of the hypersurface V^n . It is known that the *i*th mean curvature M_i of the hypersurface V^n at the point *P* is defined by

$$(0.1) C_{n,i}M_i = \sum \kappa_1 \kappa_2 \cdots \kappa_i (i=1, \cdots, n),$$

where the expression on the right side is the *i*th elementary symmetric function of $\kappa_1, \dots, \kappa_n$, and $C_{n,i}$ denotes the number of combinations of *n* different things taken *i* at a time. Let *dA* be the area element of the hypersurface V^n at the point *P*, and *p* the scalar product of the unit normal vector of the hypersurface V^n at the point *P* and the position vector of the point *P* with respect to any orthogonal frame in the space R^{n+1} .

The purpose of this paper is to prove the following four theorems concerning closed hypersurfaces by first showing that:

a) If V^n is an orientable hypersurface, with a closed boundary V^{n-1} of dimension n-1 $(n \ge 2)$, which is twice differentiably imbedded in an (n+1)-dimensional Riemannian space R^{n+1} , then the integral $\int_{V^n} (1+M_1p) dA$ can be expressed as an integral over the boundary V^{n-1} .

b) If in addition V^n is of class C^3 and the space R^{n+1} is of constant Riemannian curvature, then the integral $\int_{V^n} (M_{n-1} + M_n p) dA$ can also be expressed as an integral over V^{n-1} .

These results have been obtained in a previous paper [2] by the author for an orientable hypersurface V^n twice differentiably imbedded in a Euclidean space E^{n+1} of n+1 $(n\geq 2)$ dimensions.

THEOREM 1. Let V^n be a closed orientable hypersurface twice differentiably imbedded in a Riemannian space \mathbb{R}^{n+1} of n+1 ($n\geq 2$) dimensions, then

Received June 28, 1954 and in revised forms January 3, 1955 and May 10, 1955.