EIGENFUNCTION EXPANSIONS ASSOCIATED WITH A NON-SELF-ADJOINT DIFFERENTIAL EQUATION

Bernard Friedman and L. I. Mishoe

1. Introduction. In solving certain characteristic boundary-value problems by the method of separation of variables [2], the problem arose of expanding an arbitrary function $f(x)$ in terms of the eigenfunctions of the equation $(A+\lambda B) u=0$, where A is a second-order and B a first-order differential operator. In this paper we consider a special case of this problem, namely the following: Expand a function $f(x)$ in terms of the eigenfunctions of the equation

$$
\begin{equation*}
u^{\prime \prime}+q(x) u+\lambda\left(p(x) u-u^{\prime}\right)=0, \tag{1.1}
\end{equation*}
$$

where $u(0)=u(1)=0$. There has been a long series of investigations concerned with the corresponding self-adjoint problem for the equation $(A-\lambda) u=0$, which often occurs in connection with the boundary-value problems of mathematical physics. However, the problem we are concerned with here does not seem to have been considered previously. F. Browder [1] has considered the eigenfunctions of $A+\lambda B$ where A and B are general partial differential operators, but he has always assumed that B is positive definite. We shall show that the lack of definiteness in B gives rise to peculiar results in the expansion theorem. R. E. Langer [3] has considered the expansion theorem for the following equation, which is similar to (1.1) ${ }^{1}$.

$$
u^{\prime \prime}+\left\{p_{11} \lambda+p_{10}\right\} u^{\prime}+\left\{p_{22} \lambda^{2}+p_{21} \lambda+p_{20}\right\} u=0
$$

This equation of course reduces to (1.1) if we put

$$
p_{10}=p_{22}=0, \quad p_{11}=-1, \quad p_{21}=p, \quad p_{20}=q
$$

However, Langer in his paper made the assumption that the roots of $r^{2}+p_{11} r+p_{22}=0$ were distinct and nonvanishing. For (1.1), it is clear that $r=0, r=+1$, and hence Langer's conditions do not apply. In fact, the results we shall obtain are strikingly different from those of Langer.

Since the operator B is not self-adjoint, we must also consider the adjoint of (1.1), namely

[^0]
[^0]: Received February 2, 1955. This research has been made possible through support and sponsorship extended by the Office of Scientific Research, II.Q., Air Research and Development Command, U.S.A.F., Baltimore, Maryland, under Contract No. AF-18(600)-367.

 1) A detailed treatment of this expansion problem and related questions has been given by Titchmarsh [4].
