CORRESPONDING RESIDUE SYSTEMS IN ALGEBRAIC NUMBER FIELDS

H. S. BUTTS AND H. B. MANN

In this paper we shall consider integral ideals in finite algebraic extensions of the field R of rational numbers. Algebraic number fields will be denoted by \mathfrak{F} with subscripts or superscripts, ideals by German letters, algebraic numbers by lower case Greek letters, and numbers of the rational field R by lower case Latin letters.

Two ideals in the same field are equal if and only if they contain the same numbers.

If a_1 is an ideal in a field \mathfrak{F}_1 and a_2 is an ideal in a field \mathfrak{F}_2 , then we shall write $a_1 = a_2$ provided a_1 and a_2 generate the same ideal in some field containing all the numbers of \mathfrak{F}_1 and of \mathfrak{F}_2 (see [1, § 37]). Two such ideals may therefore be denoted by the same symbol and we shall speak of an ideal a without regard to a particular field. An ideal a is said to be contained in a field \mathfrak{F} if it may be generated by numbers in \mathfrak{F} , that is to say, if it has a basis in \mathfrak{F} .

Let a be an ideal contained in the fields \mathfrak{F}_1 and \mathfrak{F}_2 . We say that \mathfrak{F}_1 and \mathfrak{F}_2 have corresponding residue systems modulo a if for every integer α_1 of \mathfrak{F}_1 there exists an integer α_2 of \mathfrak{F}_2 such that $\alpha_1 \equiv \alpha_2$ (mod a), and for every integer α_2 of \mathfrak{F}_2 there exists an integer α_1 of \mathfrak{F}_1 such that $\alpha_1 \equiv \alpha_2$ (mod a).

The problem considered in this paper is the following one: if \mathfrak{F}_1 and \mathfrak{F}_2 are two fields containing an ideal \mathfrak{a} , under what conditions will \mathfrak{F}_1 and \mathfrak{F}_2 have corresponding residue systems mod \mathfrak{a} . We shall show that this problem reduces to that in which the ideal \mathfrak{a} is a power of a prime ideal and a necessary and sufficient condition for \mathfrak{F}_1 and \mathfrak{F}_2 to have corresponding residue systems mod \mathfrak{a} is derived in case that \mathfrak{a} is a prime ideal. A necessary (but not sufficient) condition is derived in case \mathfrak{a} is a power of a prime ideal and \mathfrak{F}_1 and \mathfrak{F}_2 are normal over $\mathfrak{F}_1 \cap$ \mathfrak{F}_2 . A special case in which the fields are of the type $\mathfrak{F}(\sqrt[q]{\mu})$ is considered. These fields are of interest in themselves and in view of Corollary 7.1 seem to have a direct connection with the general problem.

THEOREM 1. Let α be an ideal in the number fields \mathfrak{F}_1 and \mathfrak{F}_2 and suppose \mathfrak{F}_1 and \mathfrak{F}_2 have corresponding residue systems mod α . Then α has the same prime ideal decomposition in \mathfrak{F}_1 and in \mathfrak{F}_2 .

Received May 28, 1954.