NOTE ON A THEOREM OF HADWIGER

R. STEINBERG

Throughout this paper, H denotes a Hilbert space over the real or complex numbers and (x, y) denotes the inner product of the vectors x, y of H. The only projections we consider are orthogonal ones.

Our starting point is the basic fact that, if $\{u_{\alpha}\}$ is an orthonormal basis of H, then the Parseval relation

$$(1) (x, y) = \Sigma(x, u_{\alpha})(u_{\alpha}, y)$$

is valid for each pair of vectors x, y of H. It is easy to see that (1) is also valid if $\{u_{\alpha}\}$ is the projection of an orthonormal basis $\{w_{\alpha}\}$ and if we restrict x and y to the range of the projection. Indeed, if E is the projection, so that $w_{\alpha}E=u_{\alpha}$ for each α , then

$$(x, y) = \Sigma(x, w_{\alpha})(w_{\alpha}, y) = \Sigma(xE, w_{\alpha})(w_{\alpha}, yE) = \Sigma(x, w_{\alpha}E)(w_{\alpha}E, y)$$
$$= \Sigma(x, u_{\alpha})(u_{\alpha}, y).$$

The theorem referred to in the title deals with this result and also with the converse question:

THEOREM 1. If the Parseval relation (1) is valid for each pair of vectors x and y of H, then the set $\{u_{\alpha}\}$ is the projection of an orthonormal basis of a superspace K of H.

This result was first proved by Hadwiger [1], and, then, by Julia [2]. We first give a simple proof of Theorem 1 that depends on a simple imbedding procedure, and then consider some related questions concerning projections of orthogonal sets of vectors.

Proof of Theorem 1. We choose as K coordinate Hilbert space [4, p. 120] of dimension equal to the cardinality of the set $\{u_{\alpha}\}$. We see from (1), with $x=u_{\beta}$, $y=u_{\gamma}$, that the matrix $U=((u_{\alpha},u_{\beta}))$ is idempotent. Since U is also Hermitian, it may be interpreted as a projection acting on K. We now imbed H in K by making correspond to x in H the (row) coordinate vector $x'=\{(x,u_{\alpha})\}$ in K. In particular, to the vector u_{β} there corresponds the β th row of U which is manifestly the image, under the projection U, of the β th coordinate basis vector. Finally, if $x'=\{(x,u_{\alpha})\}$ and $y'=\{(y,u_{\alpha})\}$, then $(x',y')=\Sigma(x,u_{\alpha})(y,u_{\alpha})=\Sigma(x,u_{\alpha})(u_{\alpha},y)=(x,y)$; thus the imbedding is isometric and we are done.

We next prove a related result which is due to Julia [2, (c)].