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1. Introduction. This article was motivated by the desire to obtain
an iterative method for solving a system of equations, linear or not,
into which all equations would enter symmetrically, and which would
be suitable for numerical application, particularly on a high speed digital
computing machine.

The general problem considered is the solution of a system of &
equations {f,(x)=0} in » unknowns (2, - -+, @,)=« where, as throughout
the paper, all variables and function values are real. Each step of our
method consists in obtaining, from one approximation « to a solution
of the system, the next approximation by adding to x the vector sum
of corrections parallel to the gradients of the % functions f,(x). The
lengths of the corrections are regulated by individual weights and by
use of a factor p%0. The component gradient correction for a single
equation f(x)=0 is of the Newton-Raphson type because the correction,
if applied to an initial approximation z®, gives a point annihilating the
usual linear approximation to f,(«) for « near a®.

After considering in §2 the well known formula for a gradient
correction to an approximate solution z® of a single equation f(x)=0,
the method of composite gradient corrections for a general system is
described in §3. In §4, we apply the method to a system of % linear
equations in # unknowns, and prove that, for an arbitrary approxima-
tion 2 to a solution of the system, we obtain a sequence {x™} which
tends with a geometric rate of convergence to a point #, nearest to
™, of the set which satisfies the system in a sense of weighted least
squares. Section 5 treats a fairly general system with an isolated solu-
tion #. The sequence {x™} of §3 is proved to converge to & if the
initial approximation x® is sufficiently near %. Section 6 considers the
implicit function xz=ux(t) defined by a related system of n equations f(x;
7)=0, where r=(7rj, +-+, ), and r=t(t), 0<¢t<<1. It is proved that,
if 0=¢,<t;<-+-<t,=1 is a fine enough partition of the ¢-interval,
then the sequence {#™} of §3 tends to «(¢;,) if #®=uwx(¢,-,). This result
yields a small arc method for computing the points x(#,) in sequence.

There is an extensive literature on the solution of Ilinear systems
{f(x)=0} by iterative processes where each iteration involves a correc-
tion related to a specified direction, in particular that of some gradient;
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