CONTINUOUS SPECTRA AND UNITARY EQUIVALENCE

C. R. PUTNAM

1. Introduction. In the differential equation

(1)
$$(px')' + (\lambda + f(t))x = 0$$
,

let λ denote a real parameter and let p(t) (>0) and f(t) be continuous real-valued functions on $0 \leq t < \infty$. Suppose that (1) is of the limit-point type, so that (1) and a linear homogeneous boundary condition

(2_a)
$$x(0) \cos \alpha + x'(0) \sin \alpha = 0$$
, $0 \leq \alpha < \pi$,

determine a boundary value problem with a spectrum $S=S_{\alpha}$ on the half-line $0 \leq t < \infty$; cf. [7]. The continuous spectrum C_{α} (if it exists) is determined by a continuous monotone nondecreasing basis function $\rho_{\alpha}(\lambda)$. It is known that the set of cluster points, S', of S_{α} is independent of α , [7, p. 251]; the question as to whether the corresponding assertion for C_{α} is also true was raised by Weyl [7, 7. 252] but is still undecided.

Consider the self-adjoint operators $H_{\alpha} = \int \lambda dE_{\alpha}(\lambda)$ (all of which are extensions of the same symmetric operator) belonging to the various boundary value problems determined by (1) and (2_{α}) ; cf. for example, [2]. The object of this note is to shown that any two H_{α} possessing purely continuous (hence, in view of the above remark concerning S', necessarily identical) spectra are unitarily equivalent, at least if certain conditions concerning the nature of the sets C_{α} and the basis functions $\rho_{\alpha}(\lambda)$ are met. In fact there will be proved the following.

THEOREM (*). Suppose that there exist two (distinct) values α_1 and α_2 ($0 \leq \alpha_k < \pi$) such that, for each of the two boundary value problems determined by (1) and $(2_{\alpha k})$, the following three conditions are satisfied:

(i) $S_{\alpha k} \neq (-\infty, \infty),$

(ii) the point spectrum is empty, and

(iii) $\rho_{\alpha k}(\lambda)$ is absolutely continuous. Then $H_{\alpha 1}$ and $H_{\alpha 2}$ are unitarily equivalent.

The condition (i) of (*) surely holds if, for instance, f is bounded or even bounded from below on $0 \leq t < \infty$. It should be noted however that every (real) λ belongs to an S_{α} for some α (depending on λ); [1].

For other results on the continuous spectra of boundary value pro-

Received April, 1956. This work was supported by the National Science Foundation research grant NSF-G481.