A CONGRUENCE THEOREM FOR TREES

PAUL J. KELLY

Let A and B be two trees with vertex sets a_1, a_2, \dots, a_n and b_1, b_2, \dots, b_n respectively. The trees are congurent, are isomorphic, or "are the same type", $(A \cong B)$, if there exists a one-to-one correspondence between their vertices which preserves the join-relationship between pairs of vertices. Let $c(a_i)$ denote the (n-1)-point subgraph of A_{-} obtained by deleting a_i and all joins (arcs, segments) at a_i from A. It is the purpose here to show that if there is a one-to-one correspondence in type, and frequency of type, between the sub-graphs of order n-1 in A and B, that is, if there exists a labeling such that $c(a_i)\cong c(b_i), i=1, 2, \dots, n$, then $A\cong B$. It is assumed throughout, therefore, that there is a labeling of the two trees A and B such that $c(a_i)\cong c(b_i), i=1, 2, \dots, n$, where $n \ge 3$.

Some lemmas to the main theorem are established first. Let T denote a certain type of graph of order j, where $2 \leq j < n$, which occurs as a subgraph α times in A and β times in B. If α_i is the number of T-type subgraphs which have a_i as a vertex, then,

$$\alpha = \left(\sum_{1}^{n} \alpha_{i}\right) / j.$$

Similarly,

 $\beta = \left(\sum_{i=1}^{n} \beta_{i}\right) / j,$

where b_i is the number of *T*-type subgraphs having b_i as a vertex. Because $c(a_i) \cong c(b_i)$, the number of *T*-type subgraphs which do not have a_i as a vertex is the same as the number which do not have b_i as a vertex. Thus

$$\alpha - \alpha_i = \beta - \beta_i, \qquad i = 1, 2, \cdots, n$$

Therefore

$$\sum_{i=1}^{n} (\alpha - \beta) = \sum_{i=1}^{n} (\alpha_i - \beta_i) ,$$

so $n(\alpha-\beta)=j(\alpha-\beta)$, which implies $\alpha=\beta$. This, in turn, implies $\alpha_i=\beta_i$, $i=1, 2, \dots, n$, and the lemma is established.

LEMMA 1. Every type of proper subgraph which occurs in A or B Received December 16, 1955.