A REAL INVERSION FORMULA FOR A CLASS OF BILATERAL LAPLACE TRANSFORMS

WILLIAM R. GAFFEY

1. Introduction. The Post-Widder inversion formula for unilateral Laplace transformations [1] states that, under certain weak restrictions on $\phi(u)$ *,*

$$
\lim_{k\to\infty}\left(\frac{k}{c}\right)^{k+1}\frac{1}{k!}\int_0^\infty\phi(u)u^k\exp\left(-k\frac{u}{c}\right)du=\phi(c),
$$

for any continuity point c of $\phi(u)$.

This formula applies when $\phi(u)$ is defined only for $u \geq 0$. A similar formula may be deduced if $\phi(u)$ is defined for $u \ge -a$, for some positive a. In such a case, we may let $\phi^*(u) = \phi(u-a)$, and we may then use the Post-Widder formula to determine $\phi^*(u)$ at the point $u=c+a$. The inversion formula then becomes

$$
\lim_{k\to\infty}\left(\frac{k}{c+a}\right)^{k+1}\frac{1}{k!}\int_0^\infty\phi(u-a)u^k\exp\left(-k\frac{u}{c+a}\right)du=\phi(c),
$$

or, if we make the transformation $z=u/(c+a)$,

(1)
$$
\lim_{k\to\infty}\frac{k^{k+1}}{k!}\int_0^\infty \phi[(c+a)z-a]z^k\exp(-kz)dz=\phi(c).
$$

This suggests that, if $\phi(u)$ is defined for $-\infty < u < \infty$, some sort of limiting form of (1) applies. We shall prove that under suitable restrictions on ε and on the behavior of $\phi(u)$,

$$
(2) \qquad \lim_{k\to\infty}\frac{k^{k+1}}{k!}\int_{-\infty}^{\infty}\phi[(c+k^{\epsilon})z-k^{\epsilon}]z^{k}\exp(-kz)dz=\phi(c).
$$

2. Remarks. In the following sections $\phi(u)$ will be assumed to be integrable over the interval from $-\infty$ to ∞ , and c will be assumed to be a continuity point of $\phi(u)$. All limits should be understood to be for increasing values of *k.*

The expression $\partial/(c+k^2)$, where ∂ and ϵ are positive numbers, occurs frequently. It will be denoted by $\delta(k, \varepsilon)$.

Finally, it may be noted that in terms of the Laplace transform of *φ(u)* for real *t,*

Received December 7, 1955, and in revised form April 13, 1956.