A REAL INVERSION FORMULA FOR A CLASS OF BILATERAL LAPLACE TRANSFORMS

WILLIAM R. GAFFEY

1. Introduction. The Post-Widder inversion formula for unilateral Laplace transformations [1] states that, under certain weak restrictions on $\phi(u)$,

$$\lim_{k\to\infty}\left(\frac{k}{c}\right)^{k+1}\frac{1}{k!}\int_0^{\infty}\phi(u)u^k\exp\left(-k\frac{u}{c}\right)du=\phi(c),$$

for any continuity point c of $\phi(u)$.

This formula applies when $\phi(u)$ is defined only for $u \ge 0$. A similar formula may be deduced if $\phi(u)$ is defined for $u \ge -a$, for some positive a. In such a case, we may let $\phi^*(u) = \phi(u-a)$, and we may then use the Post-Widder formula to determine $\phi^*(u)$ at the point u=c+a. The inversion formula then becomes

$$\lim_{k\to\infty}\left(\frac{k}{c+a}\right)^{k+1}\frac{1}{k!}\int_0^\infty\phi(u-a)u^k\exp\left(-k\frac{u}{c+a}\right)du=\phi(c),$$

or, if we make the transformation z=u/(c+a),

(1)
$$\lim_{k \to \infty} \frac{k^{k+1}}{k!} \int_0^\infty \phi[(c+a)z - a] z^k \exp((-kz) dz = \phi(c) .$$

This suggests that, if $\phi(u)$ is defined for $-\infty < u < \infty$, some sort of limiting form of (1) applies. We shall prove that under suitable restrictions on ε and on the behavior of $\phi(u)$,

(2)
$$\lim_{k\to\infty}\frac{k^{k+1}}{k!}\int_{-\infty}^{\infty}\phi[(c+k^{\varepsilon})z-k^{\varepsilon}]z^{k}\exp((-kz)dz=\phi(c).$$

2. Remarks. In the following sections $\phi(u)$ will be assumed to be integrable over the interval from $-\infty$ to ∞ , and c will be assumed to be a continuity point of $\phi(u)$. All limits should be understood to be for increasing values of k.

The expression $\delta/(c+k^{\epsilon})$, where δ and ϵ are positive numbers, occurs frequently. It will be denoted by $\delta(k, \epsilon)$.

Finally, it may be noted that in terms of the Laplace transform of $\phi(u)$ for real t,

Received December 7, 1955, and in revised form April 13, 1956.