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l Introduction. The Post-Widder inversion formula for unilateral
Laplace transformations [1] states that, under certain weak restrictions
on φ(u)f

lim (k~Y+1A \~φ{u)ιιk exp (-
fc-*°° \ c J kl Jo V

for any continuity point c of φ{u).
This formula applies when φ{u) is defined only for &I>0. A similar

formula may be deduced if φ(u) is defined for u^ —a, for some positive
α. In such a case, we may let φ*(u)=φ(u—a), and we may then use
the Post-Widder formula to determine φ*(u) at the point u=c + a. The
inversion formula then becomes

lim f-A__y+ λ.[φ(u-a)uk exp (-
fc\c4α/ A:! Jo \

or, if we make the transformation z=ul(c

(1) lim ^+1\ φ[(c + a)z-ά]zk exp (-kz)dz=φ(c)

This suggests that, if φ(u) is defined for — oo <̂  u < co, some sort
of limiting form of (1) applies. We shall prove that under suitable
restrictions on ε and on the behavior of φ(u),

lim - * - ( φ[(c + k*)z-ks]zk exp (-kz)dz=φ(c) .
fc~*~ k l J

2 Remarks In the following sections φ(w) will be assumed to be
integrable over the interval from — oo to oo, and c will be assumed to
be a continuity point of φ(u). All limits should be understood to be for
increasing values of k.

The expression <?/(c-f kz), where d and ε are positive numbers, occurs
frequently. It will be denoted by δ(h, ε).

Finally, it may be noted that in terms of the Laplace transform of
φ(u) for real t,
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