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1. Introduction. Let D be a simply connected region with an
analytic boundary C. Assume that 2=0 is an interior point while z=l
lies on the boundary. We assume further that the tangent to C at
z==l is not parallel to the real axis. In this case, we shall be able to
fit into D small angles Γ placed symmetrically about the real axis and
with vertex at z==l. These angles will be of the form —δ<LΘ<Lδ or
π—δ<LΘ<^π + δ, <5>0, depending upon the location of z=1. For a given
f(z) regular in D, we consider the following limits defined recursively

αo= lim f(z)

(1) Ox-Kmfc-lΠ/W-αJ

α2= lim (z-i

If each limit in (1) exists and is independent of the manner in which
z->l through values in some angle Γ, then f(z) is said to possess an
asymptotic expansion at z=l in the sense of Poincare, and this is in-
dicated by writing

(2 ) f(z) ~ V, a (z—l)n

We shall designate by A(=A(D)) the linear class of functions which are
regular in D and which possess asymptotic expansions at 2=1 in the
sense of Poincare. The angle Γ in which (1) is valid may depend upon
the particular f e A selected.

Uniqueness theory is concerned with distinguishing nontrivial sub-

classes of A within which the expansion Σα Λ (s—l) n determines the

corresponding function uniquely. Write for the remainder

( 3) Rn(z)=f(z)-ao-θi(z-ΐ) αn-xίs-l)"-1,

and consider the ratios
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