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l Introduction* All spaces and topological groups referred to in
this paper will be compact and metric. All topological groups will ad-
ditionally be zero-dimensional, that is, either finite or homeomorphic to
a Cantor set. As general references we cite Zippin [6] and Montgomery
and Zippin [4]. Several of our definitions are similar to those in [6].

A topological transformation group of a topological space is an as-
sociation of a topological group G and a topological space E in the sense
that each element g of G and point x of E determine a unique point
of E. If this point be called x'f we write gx=x'. The association is
subject to the following conditions:

(1) if e denotes the identity of G, ex=x for all xeE,
(2) g{gfx)-{ggf)x, g, gf eG, xeE, and
(3) gx is continuous simultaneously in g and x.

Each element of G may, under the association, be regarded as a
homeomorphism of E onto itself.

The topological transformation group G is said to be effective if for
each g e G not the identity, there is an xge E for which gxg Φ xg and
is said to be strongly effective (or fixed-point-free) if for each g eG not
the identity and for each x e E, gxφx. We shall use the symbol
Tg(G, E) to denote a particular association of G with E such that G is
an effective topological transformation group of Έ. Thus by Tg(G, E)
we mean a particular group of homeomorphisms of E onto itself, the
group being isomorphic to and identified with G. If Tg(G9 E) is strong-
ly effective we write TgS(G, E).

For x e E, G(x) will denote the set of all images of x under G and
will be called the orbit of x under G. Similarly for X C E, G(X) will
denote the set of images of X under G. The individual orbits may be
regarded as the "points" of a space, the orbit space, O[Tg(G, E)~] of
Tg(G, E). O[Tg(G, E)] is a continuous decomposition of E.

The main purpose of this paper is to prove the following theorems:

THEOREM 1. Let G be any compact zero-dimensional topological
group. Let M be the universal curve.1 Then there exists a TgS(G, M)
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1 The universal curve is a particular one-dimensional locally connected continuum. Its
description and a characterization of it are given in § 3.
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