THE CENTER OF A COMPACT LATTICE IS TOTALLY DISCONNECTED

Alexander Doniphan Wallace

The purpose of this note is to prove the theorem of the title. A topological lattice is a Hausdorff space together with a pair of continuous functions $\wedge: L \times L \to L$, $\vee: L \times L \to L$ satisfying the usual conditions for lattice operations. As is customary we may write $x \wedge y$ in place of $\wedge(x, y)$. All references are to Chapter II of [1]. We assume the reader to be familiar with the elementary facts concerning topological algebras (groups, lattices, semigroups) and set-theoretic topology.

THEOREM. The center of a compact lattice is totally disconnected.

Proof. Let L be a compact lattice. As is wellknown L has a zero and a unit, 0 and 1. If A is the set of pairs $(x, y) \in L \times L$ such that $x \wedge y=0$ and $x \vee y=1$ then $A = \bigwedge^{-1}(0) \bigcap \bigvee^{-1}(1)$ so that A is closed. The projection $(x, y) \to x$ takes A onto the closed set B and B is the set of all $x \in L$ which admit a complement.

Now N, the set of neutral elements of L, is the intersection of the maximal distributive sublattices by Theorem 11. But if D is a distributive sublattice of L its closure is also a distributive sublattice. It follows that N is closed. By the corollary to Theorem 10 the center C of L is $N \cap B$ so that C is closed.

By the lemma on page 27 each element $x \in C$ has a unique complement $k(x) \in C$. We will show that $k: C \to C$ is continuous. If G is the subset of $C \times C$ consisting of all (x, k(x)) with $x \in C$ it is enough to show that G is closed since C is compact. But by the remarks above we have $G = (C \times C) \cap \bigwedge^{-1}(0) \cap \bigvee^{-1}(1)$.

Now C is a distributive lattice (Theorem 9 and Corollary p. 29) with unique complements. Thus C is a commutative *topological* group under the operations

$$x+y=(x \wedge k(y)) \vee (k(x) \wedge y), \quad -x=x$$

all of whose elements are of order 2, that is, x+x=0 for all x. If Q is the component of C containing 0 and if $q \in Q$, $q \neq 0$, then there is a continuous homomorphism f taking Q into Z, the reals mod 1, such that $f(q) \neq f(0)$. Since f(Q) is connected it contains an interval of Z and therefore contains an element not of finite order. Since the order of each element of Q is two this is a contradiction. Hence Q contains

Received August 6, 1956.