CONVEXITY OF ORLICZ SPACES
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In a paper [1] which appeared in 1936, J. A. Clarkson defined a
property of Banach spaces known as uniform convexity. Let |f| denote
the norm of an element f of such a space and let {f,, f.} be any
sequence of pairs of elements such that || f]|=|f.|=1 and lim 3|/, + f.|=1.

The space is said to be uniformly convex if these conditions imply that

lim | fn—/f|=0. It has been shown [2] that an equivalent definition is
one in which the condition |fi|=|f.]|=1 may be replaced with the
weaker ||f,] <1 and |f,|<1. Clarkson has been successful in showing

that the Lebesgue spaces L, are uniformly convex if p%~1 and that
L, is not uniformly convex. The convexity properties of more general
classes of Banach spaces have been investigated by M. M. Day [3], I.
Halperin [4] and E. J. McShane [7].

A concept of convexity related to uniform convexity has been de-
scribed and is termed strict convexity. It is defined in the following
manner. ot f’, f be any pair of elements in a Banach space such
that |f|=|f"l=1 and |.F'+f.,|]=1. The space is said to be strictly
convex if these conditions imply that |f’— f"|=0. In a Euclidean space,
strict convexity corresponds geometrically to the property that the unit
sphere |f]|=1 does not contain a segment. We remark that, if a space
has the property of uniform convexity, then it possesses that of strict
convexity as well; however, the converse implication is generally untrue.

The principal objective of this paper is to investigate the conditions
which an Orlicz space [9] must satisfy to be uniformly convex. Also
the related problem of determining the conditions for strict convexity
is considered. A solution to both of these questions has been presented
which may be regarded as complete in the sense that both the neces-
sary and sufficient criteria are developed.

We begin by formulating the definitions of Orlicz spaces in accord-
ance with the notations to be used subsequently. Except in minor
details we shall adopt the standard conventions. Let v=¢(u) be a
monotonically nondecreasing function not identically zero, defined for
all 0 <<wu such that ¢(u)=¢(u—) and ¢(0)=0; also, let @(u) denote the
associated function ¢(u)=¢u+). Let u=¢(v) be the function inverse to
¢(u) which is defined by the relations:
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