AN ULTRASPHERICAL GENERATING FUNCTION
FRED BRAFMARN
1. Introduction. Let P{®*(v) denote ultraspherical polynomials and
let
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r=(1-2yw+y)'"*,

with the roots to be those assuming the value 1 for ¢=0. Then this
note will prove that
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valid for t sufficiently small. In (2), ¢ is an arbitrary parameter. Equa-
tion (2) is a direct generalization of Rice’s result given in [8, equ. 2.14],
to which it reduces for a=0. (A different generalization of Rice’s
result is given in [3].) For ¢ the non-positive integer —#k, the left side
of (2) reduces to a product of ultraspherical polynomials:
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In addition, this note will show other results on ultraspherical
polynomials. Further, it will provide a new way of deriving some results
of Weisner. These will be shown later. ‘

The author desires to thank the referee for helpful suggestions re-
garding the simplification of proof.

2. A preliminary result. It will be established in this section
that
”Received May 7, 1956, and in revised form November 28, 1956.

1319



